GROWTH TYPES OF FIBONACCI AND MARKOFF*

HARVEY COHN

City College of New York, New York, NY 10031

1. PRELIMINARY REMARKS

The pattern of Fibonaccian growth in pure and applied mathematics is well known and seemingly ubiquitous. In recent work of the author (see [1]), a generalization of this pattern emerged where the "linear" growth of Fibonacci type is replaced by a "tree" growth which might appropriately be called the "Markoff type." There are many instances where tree-growth is used for number-theoretic functions (for a recent example, see [4]). What is different here is the application of the tree to (noncommutative) strings of symbols. This, paradoxically, makes for a simpler device but one with applications to many different fields.

The use of the "Markoff" designation requires some clarification. We refer to A. A. Markoff (1856-1922), the number-theorist. He was also the probabilitist (with the name customarily spelled "Markov" in this context), but the growth type we desire is *nonrandom* and strictly a consequence of his number-theoretic work. To compound the confusion, he had a lesser known bro-ther, V. A. Markoff (also a number-theorist), and a very famous son, the logician A. A. Markov (still alive today).

2. SEMIGROUP

We consider S_2 a free semigroup consisting of strings of symbols in A and B (including "1" the null symbol) to form *words* w = w(A,B). If the word w has a symbols A and b symbols B (for $a \ge 0$, $b \ge 0$), then we say word w has *coordinates* $\{a, b\}$. For instance, some coordinates and words are

{0, 0}, {1, 0}, {0, 1}, {1, 1}, {1, 1}, {4, 2}, 1, A, B, AB, BA, AAABAB, etc.

Of course, distinct words (e.g., AB and BA) may have the same coordinates. Naturally, we abbreviate AAABAB as $A^{3}BAB$, etc.

We also introduce the concept of *equivalence*. Two words of S_2 are said to be equivalent if they are cyclic permutations of one another including the trivial (identity) permutation. This is denoted by "~". Thus,

$$w_1(A,B)w_2(A,B) \sim w_2(A,B)w_1(A,B).$$

ABAA ~ ABAA ~ BAAA ~ AAAB ~ ...

Equivalent words have the same coordinates, of course (but not conversely, ABAB and AABB have coordinates {2, 2}).

Actually $w_1 \sim w_2$ means $Tw_1 = w_2T$ (for $T \in S_2$), and for computational purposes it might be convenient to do computations inside the *free group* by writing $w_1 = T^{-1}w_2T$. In principle, however, growth requires only a semigroup. We also need the symbol when we have multiple equivalence

*Supported by NSF Grant MCS 76-06744.

April 1979

$$(w_1, w_2, \ldots) \sim (w'_1, w'_2, \ldots) \iff Tw_1 = w'_1T, Tw_2 = w'_2T, \ldots$$

for the same T in each case.

3. TYPES OF GROWTH

Fibonaccian growth suggests the sequence

$$(f_{-2} = 1, f_{-1} = 0), f_0 = 1, f_1 = 1, f_2 = 2, \dots, f_{n+1} = f_{n-1} + f_n$$

If we start with A and B instead of \boldsymbol{f}_0 and \boldsymbol{f}_1 we have a sequence of strings, $w_n(A,B)$

$$w_0 = A, w_1 = B, w_2 = AB, \dots, w_{n+1} = w_{n-1}w_n.$$

To list a few strings with coordinates

$$\{1, 0\}, \{0, 1\}, \{1, 1\}, \{1, 2\}, \{2, 3\}, A, B, AB, BAB, ABBAB, \cdots$$

Clearly $w_n(A,B)$ has the coordinates $\{f_{n-2}, f_{n-1}\}$.

Here we have used the strings $w_n(A,B)$ instead of f_n but the progression is still linearly ordered:

$$\cdots \rightarrow (w_{n-1}, w_n) \rightarrow (w_n, w_{n-1}, w_n) \rightarrow \cdots$$
 (Fibonacci type).

We now consider a generalization of this growth where the ordering is not linear but tree-like,

$$(w',w'') \qquad (Markoff type).$$

Thus, once w(=w'w'') is formed, we have the choice of dropping w' (Fibonacci again) or dropping w''.

We illustrate the *Markoff tree* generated by starting with the pair (*A*,*B*). (The "+" and "-" signs are explained in Section 4 below).

There are 2^{n-1} possible pairs on the *n*th level.

The reader can easily recognize Fibonaccian growth on the extreme right diagonal $\left(\alpha\right)$

On the extreme left diagonal (β) , we see the simpler growth

B, *AB*, *AAB*, *AAAB*, ...

This may seem asymmetrical, but a parallel diagonal (γ) gives

B, AB, BAB, BBAB, ...

which is equivalent (with the same "T" = B) to

B, *BA*, *BBA*, *BBBA*, ...

4. EUCLIDEAN PARTITION

If we look at the words in the Markoff tree (in Section 3), we see that they have coordinates as follows:

In general, a pair (w_1, w_2) has the coordinates

 $(\{a_1, b_1\}, \{a_2, b_2\})$ where $a_1b_2 - a_2b_1 = \pm 1$.

(The "+" and "-" designations give this sign in Section 3 and above.) We can prove an even stronger result if we introduce a definition:

Let a, a', a'', b, b', b'' all be ≥ 0 , then we say

(a,b) = (a',b') + (a'',b'')

is a euclidean partition exactly when a'b'' - b'a'' = +1. Then every such (a,b) has a euclidean partition if ab > 0 by virtue of the euclidean algorithm by the solvability of

 $ax - by = \pm 1$, $(0 \le x \le b, 0 \le y \le a)$.

For +1, (x,y) = (a'',b''); for -1, (x,y) = (a',b'). Clearly any (a,b) can be ultimately partitioned to (0,1) and (1,0). For instance, if we start with (5,7), we have:

(5,7) = (3,4) + (2,3), (3,4) = (1,1) + (2,3),(2,3) = (1,1) + (1,2), (1,2) = (1,1) + (0,1),(1,1) = (1,0) + (0,1).

We now see, generally, that if (w', w'') is in the Markoff tree and w = w'w'' with $\{a', b'\}$, $\{a'', b''\}$, and $\{a, b\}$ the coordinates of w', w'', and w (respectively), then we write

$$(w',w'')^+ \Rightarrow (a,b) = (a',b') + (a'',b'') (w',w'')^- \Rightarrow (a,b) = (a'',b'') + (a'',b''),$$

as euclidean partitions in each case. The property is preserved in the Markoff tree, so every $\{a, b\}$ with gcd (a,b) = 1 (and $a \ge 0$, $b \ge 0$) is represented as the coordinate of some word in the Markoff tree. We shall next see how words in the Markoff tree are composed by euclidean partitions.

5. STEP-WORD

The symbol we introduce to explain words in the Markoff tree is called the $step\mbox{-word}$

$$(A,B)^{a,b} = \prod_{s=1}^{a} AB^{e_s}, e_s = [sb/a] - [(s-1)b/a]$$

where $n = [\xi]$ is the integral part of ξ (satisfying $n \le \xi < n + 1$). Here we assume a > 0, b > 0, and gcd (a,b) = 1. The further definition "by fiat" includes a = 0 (b = 1),

$$(A,B)^{0,1} = B.$$

In any case, $(A,B)^{a,b}$ has coordinates $\{a, b\}$, $(i.e., \sum_{s=1}^{a} e_s = b)$.

Some of the simple cases are:

$$(A,B)^{1,0} = A, (A,B)^{0,1} = B, (A,B)^{1,1} = AB$$

 $(A,B)^{n,1} = A^{n}B, (A,B)^{1,n} = AB^{n}, (A,B)^{2m+1,2} = A^{m}BA^{m+1}B,$
 $(A,B)^{2,2m+1} = AB^{m}AB^{m+1}, (A,B)^{3,3m+2} = AB^{m}AB^{m+1}AB^{m+1}, \text{ etc.}$

Note that the values of e_s (if more than one occurs) are chosen from two consecutive integers, [b/a] and [b/a] + 1.

The symbol can be extended to an arbitrary integral pair (a,b) but this is not relevant to present work.

To see why the symbol is called a "step-word" let us note that the values of e_1, \ldots, e_a are found by differencing the sequence [bs/a] for s = 0, 1, 2, ..., a, in other words, by differencing the integral values of the step-function y = [bx/a] lying just below the line y = bx/a for $0 \le x \le a$.

6. NIELSEN PARTITION

We now construct a partition of step-words $w = (A,B)^{a,b}$ based on the euclidean partition of (a,b). (It is called a "Nielsen partition" for reasons explained in [1].) The idea is that if

$$(a,b) = (a',b') + (a'',b'')$$

is a euclidean partition, then the step-word has a (Nielsen) partition

$$(A,B)^{a,b} = (A,B)^{a',b'} \cdot (A,B)^{a'',b'}$$

For example, since (5,7) = (3,4) + (2,3), we obtain the partition:

 $ABABAB^2ABAB^2 = ABABAB^2 \cdot ABAB^2$.

The justification is that the triangle bounded by the (integral) lattice points (0,0), (a',b'), (a,b) has no lattice points in its interior and lies below the line y = bx/a (since ab' - ba' = -1). Hence the step-function for y = bx/a agrees with that of y = b'x/a' for $0 \le x \le a'$ and agrees with that of the segment from (a',b') to (a,b) (of slope b''/a''), for

$$a' \leq x \leq a' + a'' = a.$$

GROWTH TYPES OF FIBONACCI AND MARKOFF

<u>Inductive property of Nielsen partituons</u>. Let (w'_0, w''_0) be a pair of words in the Markoff free. Assume that if $(w'_0, w''_0)^+$ occurs, then $(w'_0, w''_0) \sim (w', w'')$ with w = w'w'' a Nielsen partition (of step-words), and also assume that if $(w'_0, w''_0)^-$ occurs, then $(w'_0, w''_0) \sim (w', w'')$ with w = w'w'' a Nielsen partition (of step-words). Then, the same property is hereditary to the next stage of the tree.

The property is almost immediate, the only difficulty is in the order of the words. If we have $(w'_0, w''_0)^+$ then if $(w'_0, w''_0) \sim (w', w'')$ then $(w'_0, w''_0, w''_0, w''_0)^+ \sim (w', w'', w'w'')$, so the property passes on to $(w'_0, w'_0, w''_0)^+$. On the other hand, $(w''_0, w''_0, w''_0)^- \sim (w''_0, w''_0, w''_0)^+$, (using "T" = w''_0). Hence the property passes on to $(w''_0, w'_0, w''_0)^-$ as well! The rest of the details are left to the reader.

7. MAIN THEOREM

If w(A,B) is a word in the Markoff tree (with the coordinates $\{a, b\}$), then $a \ge 0$, $b \ge 0$, gcd (a,b) = 1, and

$$w(A,B) \sim (A,B)^{a,b}$$
.

Conversely, for every pair (a,b) satisfying the above conditions, a representative w(A,B) occurs in the Markoff tree.

The proof is a direct consequence of the inductive property of the euclidean partition and the Nielsen partition. Clearly, the first stage (A,B) gives a Nielsen partition AB = A.B!

A strange consequence of this result is that the same proof would hold if we used the step-word as $(B,A)^{b,a}$ instead. (Basically, this is a consequence of the relation $AB \sim BA$.) Thus, since the main theorem is now very clear on obtaining $both \ (A,B)^{a,b}$ and $(B,A)^{b,a}$, we have

$$(A,B)^{a,b} \sim (B,A)^{b,a}$$
.

This is an elementary fact to verify but it is *not* trivial. For instance, if (a,b) = (5,7), we have

$$ABABA \cdot B^2 ABAB^2 \sim B^2 ABAB^2 \cdot ABABA$$

The dot indicates the point at which cyclic permutations would begin. The reader will find it amusing to explicitly write the T for which

$$(A,B)^{a,b}T = T(B,A)^{b,a}$$
.

[It involves the congruence $bx \equiv -1 \pmod{\alpha}$.]

MARKOFF TRIPLES

In conclusion, we shall indicate (without proofs) how some basic numbertheoretic work of Markoff [2] leads to Markoff trees of words of a semigroup. The central device is the equation in positive integers defining a so-called *Markoff triple* (m_1, m_2, m_3)

$$m_1^2 + m_2^2 + m_3^2 = 3m_1m_2m_3$$
, $(m_i > 0)$.

This so-called *Markoff equation* is discussed in [1] in terms of its connections with many branches of mathematics.

The important fact about the Markoff triple is that if $m_1^* = 3m_2m_3 - m_1$, $m_2^* = 3m_3m_1 - m_2$, $m_3^* = 3m_1m_2 - m_3$ then additional Markoff triples are verifiable as

GROWTH TYPES OF FIBONACCI AND MARKOFF

$$(m_1^*, m_2, m_3), (m_1, m_2^*, m_3), (m_1, m_2, m_3^*).$$

The presence of three *neighbors* is exactly the property of the Markoff tree, one neighbor is the *ancestor* of (m_1, m_2, m_3) and two neighbors are *descendents*. The point is that all solutions can be obtained from (1,1,1) by neighbor formation, and if we consider only solutions which have *unequal* m_1, m_2, m_3 , they can be obtained from (1,2,5). [Its neighbors are (29,2,5), (1,13,5) and (1, 2,1), which is excluded, see the tree below.]

The connection with the semigroup S_2 arises as follows: If $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$, then every word on the Markoff tree consists of a pair of matrices (w', w''). Then a general Markoff triple (of unequal m_i) is given (in some order) by

$$m_1 = \frac{1}{3}$$
 trace w' , $m_2 = \frac{1}{3}$ trace w'' , $m_3 = \frac{1}{3}$ trace $w'w''$.

Since traces are equal for equivalent words, then, by the main theorem, the Markoff triple is given by step-words in a Nielsen partition w'w'' = w. Since the partition is unique, each triple is given by the coordinates $\{\alpha, b\}$ of (say) w. The reader can verify that for $\{1, 1\}, (w', w'') = (A, B)$ and the triple (1,2,5) comes from 1/3 of the traces of A, B, and AB.

More generally, the Markoff tree of Section 3 leads to three solutions (rearranging the order so $m_1 < m_2 < m_3$):

A result which is still a troublesome conjecture (see [3]), is that there exists a unique nonnegative pair (a,b) for which the matrix

$$M = \left(\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \right)^{a,b}$$

has a given trace. Thus, m_3 (= 1/3 trace *M*) determines m_1, m_2 completely (if we keep $m_1 < m_2 < m_3$ as before).

REFERENCES

- 1. H. Cohn, "Markoff Forms and Primitive Words," Math. Ann. 196 (1972):8-22.
- 2. A. A. Markoff, "Sur les formes binaires indéfinies," *Math. Ann.* 15 (1879): 381-409.
- 3. D. Rosen & G. S. Patterson, Jr., "Some Numerical Evidence Concerning the Uniqueness of the Markoff Numbers," *Math. of Comput.* 25 (1971):919-921.
- 4. R. P. Stanley, "The Fibonacci Lattice," *The Fibonacci Quarterly* 13, No. 3 (1975):215-233.
- 5. G. T. Herman & P. M. B. Vitányi, "Growth Functions Associated With Biological Development," *Amer. Math. Monthly* 83 (1976):1-15. (The author thanks Mike Anshel for calling attention to production-theory.)