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ON GROUPS GENERATED BY THE SQUARES 

H. S. SUN 
California State University, Fresno, CA 93740 

1. INTRODUCTION 

It was known that the quaternion group and the octic group could not be 
generated by the squares of any group [5, pp. 193-194]. A natural question 
is which groups are generated by the squares of some groups. Clearly, groups 
of odd order and simple groups are generated by their own squares. In this 
paper, we show in a concrete manner that abelian groups are generated by the 
squares of some groups, and we show that every group is contained in the set 
of squares of some group. We give conditions for the dihedral and dicyclic 
groups to be generated by the squares of some groups. Also we show that sev-
eral classes of nonabelian 2-groups cannot be generated by the squares of any 
group. 

2. NOTATIONS AND DEFINITIONS 

Throughout this paper, all groups considered are assumed to be finite. 
For a group (?,we let G2 denote the set of squares, 1(G) the group of inner-
automorphisms, A(G) the group of automorphisms, Z(G) the center, |£| the or-
der of G, G1 the commutator subgroup. For any subset S of G, <£> denotes the 
subgroup generated by S. G is called an ff-group if it is generated by the 
squares of some group L; to be more precise, there is a group L such that KL > 
is isomorphic to G. 

3. CLASSES OF ̂ -GROUPS 

In a group of odd order, every element is a square; therefore, it is an 
^-group. A simple group is also an £-group since it is generated by its own 
squares; for, if the set of squares generates a proper subgroupj it WOUld be 
a normal subgroup with abelian quotient. We next show that an abelian group 
is an -S'-group. 



Ikl ON GROUPS GENERATED BY THE SQUARES [Oct. 

Tkzoti&m 3. 11 An abelian group is an g-group. 

Vh£o£} Let G be an abelian group. Then 

G = #! x H2 x ••. x Hn, 

where the #^ are cyclic groups. Let |^| = kt- The permutation group gene-
rated by the n circular permutations 

where the a^- are \G\ distinct symbols, is isomorphic to G. Let L be the 
permutation group generated by the n circular permutations 

(a11a12 ... alki b11b12 ... blki ), 

(a21a22 ... ^2kzb21b22 ... b2ki), — , 

(an la n 2 ... anknbnlbn2 ... inkB)» 
where the bij's are |(?| distinct symbols all different from the a^-'s. Then 
clearly L2 = G, and G is an 5-group. 

Using the same technique, we can prove the following: 

TkflOK&m 3.2: Every group is contained in the set of squares of some group. 
(See also [9].) 

P/LOOfJ: Let G be a group, and let P. be a permutation group on n symbols iso-
morphic to G. We will construct a permutation group L such that P is isomor-
phic to a subgroup in L . 

Let Q be a permutation group isomorphic to P on n symbols distinct from 
those of P. Let i be the isomorphism of P onto Q. If each element x in P is 
multiplied to i{x) in Q, we obtain a group 

R = {xi(x) \x e P} 
isomorphic to P. Clearly, each permutation in R is the square of a permuta-
tion in Zn symbols. Let L be the permutation group generated by the permu-
tations whose squares are in R. Then R C L2. 

Unfortunately, homomorphic images of g-groups need not be ,S-groups. If, 
however, the kernel of the homomorphism is a characteristic subgroup of the 
5-group, then the homomorphic image is also an g-group. To prove this, we 
need the following lemma, which can be proved by straightforward set-inclu-
sion. 

Lemma. 3.1: Let N be a normal subgroup of G which is contained in (G2y. Then 

<(G/N)2> = <G2>/N. 
TkzoK.<im 3. 3: Let G be an 5-group, and let 0 be a homomorphism from £_onto G 
such that the kernel of 0 is a characteristic subgroup of G. Then, G is an 
5-group, 

?KOOJ* Let L be a group such that <L2> = G. Then, the kernel of 0, being a 
characteristic subgroup of G9 is normal in L. By the lemma, 

<(L/kernel 0)2> = <L2>/kernel 0 = ^/kernel 0, 

which is isomorphic to G. Hence, G is an 5-group. 
As corollaries to Theorem 3.3, if G is an S-group, the quotient groups 

of its center, i.e., its group of inner-automorphisms, its Frattini subgroup, 
and its Fitting subgroup, are all 5-groups. 
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Tko,OK.Qjm 3.4: A nilpotent group is an 5-group if and only if its Sylow 2-sub-
group is an 5-group. 

Psiooj: Let G be a nilpotent group. Then G = T x H, where T is a 2-group and 
H is a group of odd order. If T or H is trivial, then the Theorem is evi-
dent. Suppose T is an 5-group, say <F2> = T, letting L = F x H, we have 

<L2> = G. 

Conversely, let G be an 5-group. T is a homomorphic image of G, with 
kernel of the homomorphism being H. Since H is a characteristic subgroup, by 
Theorem 3.3, T is an 5-group. 

4. DIHEDRAL AND DICYCLIC GROUPS 

Tko,OKQjn 4.1: A dihedral group Z?OT of order 2m is an S-gronp if and only if 
the congruence t = -1 (mod 77?) has a solution. 

Vh-OO^i Dm has presentation 

a^ = h 2 = 1, fc"1^ = a " 1 . 
If there were a group £ such that <L2> = Z?m, there would have to be elements 
c in L such that £2 = azb, for some i. For m = 2, Z?m is abelian, hence is an 
5-group. For 777 = 4, ZJOT is not an .S'-group. For m ^ I, 2, 4, <a> is a charac-
teristic subgroup of Dm, hence normal in L. Therefore, 

o~1ac = a*,' 
but 

(aib)~1a(aib) = a"1, 
so 

a"1 = (aib)~1a(^b) = c~1(c~1ac)c = c~1(at)c = at2 . 

t2 = -1 (mod m) must have a solution. 
Conversely, if t2 = -1 (mod m) has a solution £0, we define the group 

L = <(o,dy as follows: 

Then clearly <(L )> is isomorphic to Dm. 
G. A. Miller stated [4, p. 152] that no dicyclic group can be generated 

by the squares of any group. The following theorem gives counterexamples to 
his statement [7]: 

lhQ.OK.Qjn 4.2: A dicyclic group Dim) of order km is an 5-group if and only if 
t2 = -1 (mod 2m) has a solution. 

VK.00^: For m = 2, Dim) is not an 5-group. For m > 2, let Dim) have presen-
tation 

a2ffl = b1* = I, b2 = am, b'xab = a"1. 

If there were a group L such that <L2> = D(m), there would have to be an ele-
ment c in L with c2 = azb for some £ = 0, 1, 2, ..., 2m - 1. <a> is a char-
acteristic subgroup of Dim), hence normal in L. e-1ac = a*, for some t, but 
iaib)~1aiaib) = a"1; therefore, 

a"1 = ( a ^ K W ^ ) = c " 1 ^ " 1 ^ ) ^ = c~1ata = at2. 

Thus, t2 E -1 (mod 2w) must have a solution. 
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Conversely, if t2 - -1 (mod 2m) has a solution tQ, we define the group 
L - (c,dy by 

d4 = olm, chm == d8 = 1, d"1^ = cto. 

Then clearly <L2> is isomorphic to DQn). 

5. 2-GROUPS 

Since a nilpotent group is an £-group if and only if its Sylow 2-subgroup 
is an 5-group, 2-groups are particularly important in the determination of 
S-groups. 

L&mma 5.1: Let G be a 2-group, and let N be a normal subgroup of order 4. 
Then the index of the centralizer of N9 [G:C(N)], is at most 2. 

VKOO^'r Since N is normal, for a in N9 every conjugate of a is also in N. 
The number of conjugates is either 1 or 2, because at least two of the ele-
ments of N are in Z{G). This means that, for every a in N, the index of its 
centralizer, [G:C(a)] 3 is at most 2. If N is cyclic, let a be its generator, 
then (7(a) = C(#) . If N is not cyclic, 

N = <a> x <&>, where |a| = |&| = 2 . 

Let a £ Z(G). If H Z(G)S then C(tf) = C(b), so [£:£(#)] is at most 2. If 
Z? e Z(G) also, then C(« = £.-

lemma 5.2: Let 6* be a 2-group, let iV be an abelian normal subgroup of order 
8 contained in <£2>. If N == <a> x <&X where a is an element of order 4 in 
Z « £ 2 » , then N C Z(<£2» . 

VKOO^i Let M be a subgroup of 217 of order 2 contained in Z(G) . If M is not 
contained in <a>, then 

N = <a,M>CZ(£) H <£2> C Z « £ 2 » . 

If M = <a2>, then b, an element of order 2 in /If, can only be conjugate to b 
and ba2, and the index of C(Z?) is equal to the number of conjugates of b, so 
[G:G(b)] is at most 2. Since C(fc) contains <C2>, Z? is in Z « £ 2 » . 

ThuoK&m 5.1: A nonabelian 2-group with cyclic center is not an £-group. 

VK.OO{: By induction on the order of G; it is true for |&| = 23 [5, pp. 193-
194]. Suppose that (J is a group of lowest order with cyclic center and that 
there exists a 2-group L such that <(L2> = G. Let <e> be a subgroup of order 
2 contained in G DZ(L). Then, by Lemma 3.1, <(£/<£»2> = £/<». Z(C/<^» 
cannot be cyclic if G/<^ay is nonabelian. If G/^oy is abelian, then G/K^cy = 
Z(G/(cy). Since <c)> is contained in Z(G), G/Z(G) is a homomorphic image of 
G/<^cy. G/Z(G) is never cyclic, so G/Kpy is not cyclic. Thus, in any case, 
Z(G/<e>) i s n o t cyclic. 

Let # be the largest elementary abelian 2-group contained in Z (£/<£». 
Since Z (£/<£)>) is not cyclic, l̂ l is at least 4. S7 is a characteristic sub-
group of G/(cy, therefore normal in Lj^py. There exist normal subgroups M, 
N of L/^py of orders 2 and 4, respectively, such that M CJV C E. Let M and 
N be the normal subgroups of L which are the preimages of M and N under the 
natural homorphism of L onto L/<c)>. Then, 

\M\ = 4 , |tf| = 8, and <c> CM CN. 
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By Lemma 5.1, [L:C(M)] is at most 2, which means 

G = <L2> C CQd) , o r M C Z t f ) , 

which is cylcic. Now N is abelian, N C GN C E, which is noncyclic, so N is 
noncyclic; M C N, if M is cyclic, by Lemma 5.2, tf C Z(G), which contradicts 
the assumption that Z(G) is cyclic. 

ThzotKim 5.2: Let £ be a nonabelian 2-group with commutator subgroup of index 
4. Then G is not an £-group. 

Vtooj- Suppose L is a 2-group with <L2> = G9 Gr nontrivial, and [G:Gf] = 4. 
Let N be a normal subgroup of L contained in £', with [G':N] = 2 [3, p. 127]. 
Then L/# is a 2-group such that <(L/N)2> = G/tf, by Lemma 3.1. But, (G/N) ' = 
Gf/N is nontrivial, and the order of G/N, 

[G:N] = [G:G'][G':N] = 8. 

Thus, G/N is a nonabelian group of order 8 which cannot be an £-group. This 
contradiction shows that G is not an ̂ -group. 

Thzoim 5.3'* Let G be a nonabelian 2-group with <£2> cyclic and [£:<£2>] = 
4. Then G is not an 5-group. 

Pswofi: Use induction on the order of G, It is true for \G\ = 23. Assuming 
the theorem for all 2-groups of order less than 2 , let G be a nonabelian 
group of order Zn, and let [£:<£2>] = 4 with <£2> cyclic. Suppose there is 
an L with Kjj )> = G. We consider two cases with \Gr\ = 2 and \Gr\ *> 2. 

Let \Gr\ = 2 . Then every noncentral element has just two conjugates, 
i.e., for every x in G9 [G:C(x)] <_ 2. Hence, 

fl C{x) = Z(G) D <£2>. 

Since [G:Z(G)] >. 4, Z(G) = <£2>. By Theorem 5.1, £ is not an 5-group. 
Now suppose |G"| > 2. Since <£2> is cyclic, let <£2> = <c>. Then |e| = 

2n~2. Let a be the 2n_1th power of <?. Then <a> is a characteristic subgroup 
of order 2 in G, thus normal in L. Now <(£/<a>)2)> = G/<a>. Since \G'\ > 2, 
£' is not contained in <a>, so G/(ay is nonabelian. Moreover, 

[£/<a>:<(£/<a»2>] = [G:<G2>] = 4. 

Therefore, £/<a> is a nonabelian 2-group of order 2n~l with cyclic (̂G/<a)>) 2)> 
of index 4. This contradicts the induction hypothesis. 

Applying Theorems 5.1-5.3, we obtain the following theorems. 

Th(lO)iQjn 5.4'> Let £ be a nonabelian 2-group whose center 

Z(G) = <a> x <£>, where \a\ = 2 n , |fc| = 2 . 

If Z(G) contains exactly one element which is not a square and is not in the 
commutator subgroup, then G is not an /S-group. 

Vft.00^'. Let G be the central element which is neither a square nor a com-
mutator. Then c = b or alb for some i, so Z(G)/<c> = Z(£/<e» is cyclic. 
<<?> is a characteristic subgroup of G. Since Q i G!, £/</?) is nonabelian. 
By Theorem 5.1 G/{c) is not an £-group; by Theorem 3.3 G is not an £-group. 

An example of this is the group of order 16 with presentation ak = bk = 1, 
b'^ab = a"1. Here, a2b2 is a central element which is not in Gr and is not a 
square, so the group is not an ̂ -group [1, p. 146]. 
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Tfieo/iem 5.5: Let £ be a nonabelian 2-group with 

<G2> = <a> x <£>, where \a\ = n, \b\ = 2. 

Suppose (G2y contains exactly one element c which is not a square; also sup-
pose that either c i Gr or \Gr\ > 2, and [G:G!] = 4. G is not an £-group. 

The proof of this theorem is similar to that for Theorem 5.4. An ex-
ample is the group G of order 32 with presentation 

ah = b2 = c2 = d2 = 1, d'^ad = a, 

d~1od = eb, c~xac = a"1, 

where a2 and b are central elements. Here 

G' = <G2> = <a2,b>, 

and the element a2b is not a square. By Theorem 5.5 G is not an 5-group. 
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PART II: SPECIAL PROPERTIES 

In 1929, D. H. Lehmer, at Brown University, presented a summary [1] of 
discovered results concerning Stern's sequence. Also, in July 1967, some ad-
ditional results were reported by D. A. Lind [2]. In order to standardize 
the results, we will define Stern's sequence to be s(i,j) where 

(1) s(i,0) = 1, for i = 0, 1, 2, ... 
(2) s(0,j) = 0, for j = 1, 2, 3, ... 


