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PART III: ADDITIONAL RESULTS 

An examination of the sequence yields corollaries to some of the previ-
ously known results. Being fundamentally Fibonacci minded, and at the onset 
not aware of the works of Stern, Eisenstein, Lehmer and Lind, we noticed the 
following results not already mentioned—some may even seem trivial. 

(1) s(n,l) = n 
s ( n , 2 ) = n - l 
s(n,4) = n - 2 

s(n92m) = n - m 

(2) s(n9a2m) = s(n - m9a) 

(3) Another statement of symmetry is a(n,2n" - a) = s(n92 + a) 

(4) sinX'1) = 1 
s(n,2M-2) = 2 

s(n92n"k) = k 
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(10) The table on page 320 is the sequence of combinatorial coefficients 
mod 2. Hoggatt informed us that he suspected the sums of the ris-
ing diagonals were Stern numbers—he was right. 

The formal statement of the problem is that 

]£ V i J mod 2 = S(k + 1,J - 2k) 

yk+l where k = [log2j] and 2K £ j <_ 2' 
The proof is by induction relying essentially on the following theorem. 

Tkz.0H.Qjm: Given the binomial coefficient mod 2, then 

(H •- {2\t") * U2i1) - « 
the right-hand side (after some reduction) may be rewritten as 

(2n)(2n - 2) ... (2n - 2k + 2) (2n - 1)(2n - 3) ... (2n - 2fe + 1) 
(2k)(2k - 2) ... 4 • 2 (2fc - 1) ... 5 • 3 • 1 

The right-hand factor is E 1 mod 2; therefore, this is congruent to 

2k • n(n - 1) ... (n - k + 1) 

fc(fc - 1) ... 2 
which is congruent to 
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STERN NUMBERS VERSUS SUMS OF RISING DIAGONALS OF BINOMIAL NUMBERS MOD 2 
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= S[190] 
= £[2,0] 
= ^[2,1] 
= £[3,0] 
= £[3,1] 
= £[3,2] 
= £[3,3] 
= £[4,0] 
= £[4,1] 
= £[4,2] 
= £[4,3] 
= £[4,4] 
= £[4,5] 
= £[4,6] 
= £[4,7] 
= £[5,0] 
= £[5,1] 
= £[5,2] 
= £[5,3] 

Many thanks go to Dudley [1] and to Hoggatt for sponsoring the authors 
to write this series of articles. At this writing, the authors still do not 
know the general form of 

s[ny(2r + l)2m) 

and suggest that some ambitious reader show the relationship to the Fibonacci 
numbers. 
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