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3-L = b - 1, where b > 15 and 3n + i = max (£n - 1, 1) if n >_ 1, we have that 
&b_1 = 1 if 2? >. 3, 32 = 1 if b < 33 and that ((̂ (3̂ ) = 23 • 33«. Thus, there 
exists an integer v _> 2 such that (f)y(3b) = 23 - 3 if b > 1. 

Now we note that (̂ (2) = (f)3(3) = 23 • 3 and that c|)3(5c) = 23 • 3°  5C for 
any 0 _> 1 and that (J) (23 • 3 • 5°) = 23 • 3 • 5G holds even for c = 0. Again us-
ing Lemma 14 of [1] we have for a, b > 1 that 

cj)w+y(2a3b) = [$u+v(2a), c()w+y(3fc)] 

= [cj)y(23°  3), cj)w(23 • 3)] 

= 23 ® 35 
so that 

§u+v(2
a3b5°) = [2 3 • 39 23 • 3* 5°] = 23 • 3 s 5C 

s i n c e u + V > 3 . Consequent ly 

(|)w + y + i ( 2 a 3 b 5 e ) = c()w+y(2dZ3b5c3) . 

The remain ing cases a r e when a <. 1 or b <_ 1, and i t i s easy t o check 
t h a t <i>v + 3(2a3h5°) = $v + 2(2a3b5°) i f a < 1 and cf)w + 3 (2a3f o5c) = cj)u+2 (2a3 f c5c) i f 
fc <. 1 . 
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The F i b o n a c c i sequence {Fn} i s de f ined by 

F0 = 0 , F , = 1, Fn + 1 = Fn + V i (n>l). 

If t is an integer greater than 2 and cj) (£) is the length of the period of 
the sequence reduced to least nonnegative residues modulo t, it was shown in 
[2] that ^(Fm_1 + Fm + 1) = 4m if m is even and <^(Fm_1 + Fm+1) = 2m if m is 
odd. It follows for m > 4 that 

I conjectured in the same paper that if m - k > 3 then 

*&n-k + ** + *) =j(UFm.k) + UFm + k ) ) . 
The object of this note is to show that this conjecture is false and to give 
the correct answer in some special cases. 
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That the conjecture is false may be seen by taking m = 12 and ft = 4, 
for example, because in this case 

<t>(FB + F16) = (f)(1008) = 48, 
whereas 

2(<t>(F8) + <fr(F16)) = 96. 

In what follows, we write [x,y] and (x,y) for the lowest common multi-
ple and the greatest common divisor of the integers x and y9 respectively, 
and let x2 denote the largest number e for which 2e\x. Also we define 

Ha = Fa-1 + Fa+l ( a > l ) . 

Th&OKQyn: Suppose t h a t ft and m a r e i n t e g e r s w i t h 3 < k <_ m. Then 

( i ) i f k i s even and (Hw,Fk) = 1, we have 

!

2[k9m] i f 777 i s even and ft2
 < ^2 

4[ft,7??] o t h e r w i s e , 

( i i ) i f & i s odd and {Ek9Fm) = 1, we have 

* ( ^ - f e + ^ W = 4[ft,77?]. 
The proof of t h i s r e q u i r e s t h e f a c t t h a t i f n - a$ and ( a ,3 ) = 1» then 

c()(n) = [(()(a), (f)(3)] » e s s e n t i a l l y proved i n Theorem 2 of [ 3 ] . Now i t i s w e l l 
known t h a t 

Fm + k Fk+iFm + FkFm_19 

HkFm i f ft i s even 

Fm_k - (-1) (Fk_1Fm - FkFm_1) 

Fm + k 
so t h a t 

Fm-k + Fm + k 
)EmFk i f k i s odd. 

Consequently, if k is even and (Hk,Fm) = 1, then 

S [ 4ft, 277?] i f 77? i s even 

[4ft,4T??] i f 7?? i s odd, 
using results proved in[l] and [2]. Similarly, if k is odd and (Hm9Fk) = 1, 
we have that / 

l [4777,4ft] i f 777 i s even 

I [2777,4ft] i f 77? i s odd. 

The r e s u l t now fol lows by n o t i n g t h a t i f ft and m a r e even then [4ft,2?7?] equa l s 
2 [ft,777] or 4 [ft,77?] depending on whether ft2 < 77?2 or ft2 J> m2, r e s p e c t i v e l y ; i f 
ft i s even and m i s odd then [4ft,47?7] = 4[ft,7??], and i f ft and 77? a r e bo th odd 
then [4ft,2777] = 4[ft,777]. 

The c a s e s not covered by t h e Theorem a r e when ft j< 3 . The case ft = 1 
was d e a l t w i t h i n [ 2 ] . When ft = 2 , we have FOT_2 + Fm+2 = 3Fm. Now 3|FW i f 
and only i f 4|777, from which we see t h a t i f (3,FOT) = 1 and m > 3 then 

S 4777 i f 77? i s even 

8777 i f 777 i s O d d . 
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When k = 3, then Fm _ 3 + Fm + 3 = 2Hm, Now 2\Hm if and only if 3\m, Thus, if 
(2,Hm) = 1 we have that 

\12m if m is even 
$(Fm + 3 + Fm_3) =^ 

I 6m If m is odd. 
Finally, it may be worthwhile commenting on the conditions of the form 

(Ha,Fb) = 1 which have been necessary for our computations. (Ha,Fb) > 1 is 
not a rare phenomenon because, for instance, given a it is easy to determine 
an infinite number of values of b for which Ha\Fb, In fact, as we now show, 
Ha\Fb if and only if b is a positive integral multiple of 2a, For, Ha\Fla 
because F2a = FaHa. Thus, Ha\F2aa for any positive integer c. Actually, 2a 
is the least suffix b for which Ha\Fb, as shown by the proof of Theorem B in 
[2], Let B denote the set of all positive integers b for which Ha\Fb. Then 
B is nonempty, and if b19b2 e B since 

Fb1 + b2
 = Fbx + iFb2

 + Fbx
Fbz-i 

we see that bY + b2 , b1 - b2 £ B. This means that B consists of all multi-
ples of some least element which, as already pointed out, is 2a (see Theorem 
6 in Chapter I of [4]). 
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ABSTRACT 

Let n and m be positive integers with n <_m. Let A be the sequence of 
n nonnegative integers a(0) , a(l) , . .., a{n - 1), and let B be the sequence 
of m nonnegative integers M O ) , Ml) » . ••> b(m - 1), where a(i) is the mul-
tiplicity of i in B and Mj) is the multiplicity of j in A, We prove that 
for n > 7, there are exactly 3 ways to generate such pairs of sequences. 

Let n and m be positive integers with n <_m. Let A be the sequence of 
n nonnegative integers a (0) , a (I) , ..., a(n - 1), and let B be the sequence 
of 77? nonnegative integers M O ) , M l ) * ••>> b(m - 1), where a(i) is the mul-
tiplicity of i in B and Mj) is the multiplicity of j in A. Then A and 5 


