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B, =b -1, where b > 1, and B,,; = max (B, - 1, 1) if =
Bp-1 =1 if b >3, B, =1 if b < 3, and that ¢»(3P) = 2°-
exists an integer v > 2 such that ¢?(3%) = 2%+ 3 if b > 1.

Now we note that ¢*(2) = ¢3(3) = 2%+ 3 and that $3(5%) = 2%+ 3+ 5° for
any ¢ > 1 and that ¢(2%« 3+ 5° = 2%+ 3. 5% holds even for ¢ = 0. Again us-
ing Lemma 14 of [1] we have for a, b > 1 that

¢u+U(2a3b) = [¢u+v(2a)’ ¢u+v(3b)]
[67(2%+ 3), ¢*(2% - 3)]
230 3,

> 1, we have that
38x, Thus, there

so that
$p¥+v(293P5%) = 233, 23+ 3. 5°] = 23. 3. 5°
since v + v > 3. Consequently
¢u+v+1 (2a3b5c:) = ¢u+u<2a3b50).

The remaining cases are when a < 1 or » £ 1, and it is easy to check
that ¢ *3(293P5%) = ¢?*2(2%3%5°) if g < 1 and ¢**3(29305%) = ¢**2 (293P5°) if
b < 1.
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The Fibonacci sequence {F,} is defined by

Fo=0,F =1,F, . =F, +F,_, (n>1).

n+1l
If + is an integer greater than 2 and ¢(¢) is the length of the period of
the sequence reduced to least nonnegative residues modulo ¢, it was shown in
[2] that ¢(F,_, + F,,,) = 4m if m is even and ¢(F,_, + F,, ) = 2m if m is
odd. It follows for m > 4 that
1
d)(Fm-l + Fm+l) = E(cb(Fm—l) + ¢(Fm+l))'
I conjectured in the same paper that if m - k > 3 then
k
¢(Fm—k + Fm+k) = E(Cb(Fm—k) + q{)(Fm+}’<))'

The object of this note is to show that this conjecture is false and to give
the correct answer in some special cases.
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That the conjecture is false may be seen by taking m = 12 and k = 4,
for example, because in this case

G(Fy + F ) = $(1008) = 48,
whereas
2(0(Fg) + ¢ (Fy)) = 96.

In what follows, we write [x,y] and (x,y) for the lowest common multi-
ple and the greatest common divisor of the integers x and y, respectively,
and let x, denote the largest number e for which 25|x. Also we define

Hy = Fy_, + Fppy (a21).

a a-1
Theonrem: Suppose that k and m are integers with 3 < k < m. Then
(i) 4if k is even and (Hm,E%) =1, we have

2[k,m] if m is even and k, < m,
q)(Fm—k + Fm+k) =
4{k,m] otherwise,

(i1) 1if k is odd and (H,,F,) = 1, we have
d)(Fm_k + Fm+k) = 4[k,m].

The proof of this requires the fact that if n = of and (a,B) = 1, then
dp(n) = [d(w), d(B)], essentially proved in Theorem 2 of [3]. Now it is well
known that

Fpog = CUF By By = FFy_y)
Fm+k = Fk+1Fm + Fka-ls
so that
o F, if k is even
E%—k + F%+k =

H,F, if k is odd.
Consequently, if k is even and (HysFy) =1, then

[4k,2m] if m is even

ok + Fpy) = [0E,), ¢(F)] =
[4k,4m] if m is odd,

using results proved in[1l] and [2]. Similarly, if kX is odd and (#,,F}) = 1,
we have that
[4m,4k] if m is even
(i)(Fm-k +Fm+k) = [d)(Hk)’ (b(Fm)] =
[2m,4k] if m is odd.

The result now follows by noting that if ¥ and m are even then [4k,2m] equals
2[k,m] or 4[k,m] depending on whether k, < my or k, > m,, respectively; if
k is even and m is odd then [4k,4m] = 4[k,m], and if k and m are both odd
then [4k,2m] = 4[k,m].

The cases not covered by the Theorem are when k < 3. The case kK =1
was dealt with in [2]. When k = 2, we have Fyp_, + Fpy4p, = 3F,. Now 3!Fm if
and only if 4|m, from which we see that if (3,F,) = 1 and m > 3 then

4m if m is even
o (F +F . .) =

m=2 m+2

8n if m is odd.
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When k = 3, then F, _, + F,,, = 2H,. Now 2|H, if and only if 3|m. Thus, if
(2,H,) 1 we have that

12m if m is even
¢(Fm+3 + Fm—s) =
6m if m is odd.

Finally, it may be worthwhile commenting on the conditions of the form
(H, »Fp) =1 which have been necessary for our computations. (HysFy) > 1 is
not a rare phenomenon because, for instance, given a it is easy to determine
an infinite number of values of b for which HaIFb. In fact, as we now show,
Halfg if and only if b is a positive integral multiple of 2a. For, Ha’an
because F,, = F;H,. Thus, Ha|EEac for any positive integer c¢. Actually, 2a
is the least suffix b for which HalFb,as shown by the proof of Theorem B in
[2]. Let B denote the set of all positive integers b for which HalFb. Then
B is nonempty, and if b,,b, € B since

Fywb, = Fpieafp, T Fp Fp, 1
b
Fyoop, = GO Fy, 0 Fy = Fy Fp o)

we see that by + b,, by - by € B. This means that B consists of all multi-
ples of some least element which, as already pointed out, is 2a (see Theorem
6 in Chapter I of [4]).

REFERENCES

1. T. E. Stanley. "A Note on the Sequence of Fibonacci Numbers." Math.
Mag. 44, No. 1 (1971):19-22.

2. T. E. Stanley. Some Remarks on the Periodicity of the Sequence of
Fibonacci Numbers." The Fibonacci Quarterly 14, No. 1 (1976):52-54.

3. D. D. Wall. "Fibonacci Series Modulo m." American Math. Monthly 67
(1960) : 525-532.

4. G. Birkhoff & S. Maclane. A Survey of Moden Algebra. Revised ed. New
York: Macmillan, 1953.

e HF

MUTUALLY COUNTING SEQUENCES

STEVEN KAHAN
Queens College, Flushing, NY 11367

ABSTRACT

Let n and m be positive integers with n < m. Let A be the sequence of
7 nonnegative integers a(0), a(l), ..., a(n - 1), and let B be the sequence
of m nonnegative integers b(0), b(1), ..., b(m - 1), where a(Z) is the mul-
tiplicity of ¢ in B and b(j) is the multiplicity of j in A. We prove that
for n > 7, there are exactly 3 ways to generate such pairs of sequences.

Kk

Let n and m be positive integers with n < m. Let A4 be the sequence of
n nonnegative integers a(0), a(l), ..., a(n - 1), and let B be the sequence
of m nonnegative integers H(0), (1), ..., b(m - 1), where g(Z) is the mul-
tiplicity of < in B and b(j) is the multiplicity of j in 4. Then 4 and B



