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6. ZERO-ONE SEQUENCE ONCE MORE

1. Let f(m,n, r,s) denote the number of zero-one sequences of length m+ n:

(1.1) 0 =(ay, Ays enues Ayon) (a =0 orl)
with m zeros, n ones, r occurrences of (00), and s occurrences of (11). It is
proved in [1] that
m-1\{n -1
2 (m-»r=mn-8)

r s
1.2 m, ny, r, 8) = - -
(1.2) ¢ ) (m l)(n l) m-r=n-s%1)

r s
0 (otherwise).

The proof in [1] makes use of generating functions; we shall now give a
combinatorial proof of (1.2).

Arrange the m zeros and »n ones in the following way. We first place m,
zeros on the extreme left, then 7z, ones, m;, zeros, 7, ones, N, Zeros, ..., Ny
ones, m; zeros, where k is some nonnegative integer,

m=my +mg + -0 F My, n =0+ -+ Ny,
(1.3) my >0, m >0, m >1 (1< 7 <k)
ny 20 (L<i<h
and
k
P=Y (mg-1)+8+8 =m-k-1+8+8'
(1.4) oo
5= (g - 1) =n-Kk,
where e=t
L (my = 0)
§ =
0 (my > 0),
(1.5)
].(mk:O)
§' =
0 (mk>0)
It follows from (1.3) and (l.4) that
(1.6) r-s=m-n+686+¢6"-1.

It is now convenient to consider four cases:
(1) my, =my = 0 (ii1) my, = 0, my > 03

(ii1) my > 0, my = 0; (iv) my, > 0, my > O.
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The number of solutions of

a=x + e tx, 2, >0 (2 =1, ..., k)

is equal to (Z : i).

Thus, the number of solutions
Mgy Mys wuey M3 Mys eens Nyg)

of (1.3) is equal to:

@ GEI) - eerenee
I () () B Gy (G BCUEERERES
ao  GINEI) -0 @
@ ("PNGEI) - eeren-sen.

The first part of (1.2) is implied by (ii) together with (iii), the sec-
ond part by (i) and (iv). The last part of (1.2) is equivalent to the state-
ment that X cannot exist satisfying both parts of (l.4).

This evidently completes the proof of (1.2).

2. The above proof is applicable to a much more general problem. Let
(2.1) r=(r,, r,, T, cee)s 8= (8,5 8,, Sgs een)

be two sequences of nonnegative integers. We again consider zero—-one sequences
of length m+#»n with m zeros and n ones. Let f(r, §) denote the number of such
sequences, where r; =m, s; = n, with r; blocks of zeros of length 7 and s;
blocks of ones of length ¢ for ¢ = 2, 3, 4, ... . Thus, r; can be thought of
as the number of blocks of zeros of length one and s, the number of blocks of
length one.

As in §1, we envisage an arbitrary sequence O as broken into a block of
zeros (possibly vacuous), a block of ones, a block of zeros, and so on. How-
ever, we shall now enumerate the blocks by their cardinality. If k denotes
the number of blocks of ones, then the number of blocks of zeros is either
k -1, k, or Kk + 1. Hence, we have the following relations,

ryo=k{ 4+ 2k] + 3k] + -
2.2) r, =k, + 2k} + 3k! + ---
r, o= k;+ 2k) + 3k] + .-
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and

s, =k, + 2k, + 3k, + -~
(2.3) s, =k, + 2k, + 3k, + -+
8y =k, + 2k, + 3Ky + -

together with

(2.4)
k

{k’=k1’+k2'+k3’+---
ky + k, + kg + 00,

where k" =k - 1, k, or kK + 1.

The k; denote the multiplicity of blocks of zeros of length i, and the
k; denote the multiplicity of blocks of ones of length ©. Thus, the first
of (2.2) enumerates the number of blocks of zeros of length one, that is, the
total number of zeros. The second of (2.2) enumerates the number of blocks
of zeros of length two, and so on. Similar remarks apply to (2.3) for the
blocks of omnes.

It is easily verified that (2.2) is equivalent to the system of equa-
tions

ki =r, - 2r, + r,
(2.5) kj =r, - 2r, +r,

kbl =r, -2r, +r

while (2.3) is equivalent to
k, =8, - 25, + 54
(2.6) k, =8, - 25, + 3,

ky =s, - 28, + 55

Thus, the r; and s; must satisfy the following conditions, but are otherwise
unrestricted.

(2.7) (=1, 2, 3, ...).

>0

i+2 —

r, - 2y, v, 20
s; — 28, + s
It follows from (2.5), (2.6), and (2.4) that -

k' -7
(2.8) , { o2

k=s,~-5,.

]
=
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Clearly,

a8 k!
(2.9) P 8) = arpe, v Rk R

In terms of r, and S;s this becomes

(r, - 72!
(2.10) f(r, s) = (, - 2r, ¥ r,)I(z, - 2r

1
s Fr!

(s1 - 32)!

+8)!(8, - 28, + 8,)! ...

(8, - 2s,

3. For applications, it is convenient to use generating functions. By the
multinomial theorem, we have

k! Ko, Ky k k
3.1 — gk = (x, vz, +x, + -
( ) Kytkptkotooo=k  Kylk lk ! o.0.7172 73 (@, 2 3 "

where it is assumed that the series x, + x, + x5 + *-- is absolutely conver-
gent. By (2.6), the left-hand side of (3.1) is equal to

1
Z k! 181725, %85 £52-28;+8,
(8, - 258, + 53)!(31 - 25, +s8)! ... 2
8,-8,=k
k! s -2 EN -2 N
a 2: (s; - 28, + 85)!1(s, = 25, + 8,)! ...xll(xl A G Y

8, -8, =k

Hence, if we take

Ly = Yy

Ly, = yiyz

Ty = YiYsYs
, = YY,05,

(3.1) becomes

(3.2) (y, + yiyz + yiygys + eee)k

= Z k! ysx yS2y®s
(8, = 28, + s )!(s, - 28, + sq)! LJ19293
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As a first application of (3.2), we take Y, =

=y5=...=1_ Then,
the left-hand side of (4.2) reduces to

q

(y, + iy, + ylyi + -0k = gk - yy vk

—~(k+ s -
_—_Z( i )yls+k

8=0

s .— 1
Z (lsz )yflyzsz’

81—52=k

[

in agreement with (1.2).
If we take y, = y, = --- = 0, we get

[k
(Y, + Yy )k = ¥ Z(S>y§

8=0
5. —
= Z (13 >y1y2
8,-8,=k
Thus, in this case, we have
= (Y1~ T2\(S1~ &,
(3.3) firs ) = (7)),
where r - r, = k', s, - s, = k, while
ry=r, = =0,33=s,+= =0

That is, (3.3) furnishes the enumerant when all blocks are of length one or
two.

4. In (3.2), we now take
(4.1) Y, =Yg =Y, = -+ = L.
Then, the left-hand side of (3.2) becomes

(y, + yoy, +ylyly, +ylylyl + -k

k
v+ a0t v, + v+ )
k

= yk<1 +
. ylyzya}

DI Y (S RS
=0

t=

E PR PAT PR o1y Say s,
S - 8 S 172 3
8158,58, 2 3 3

817 8=k

o

[
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Hence, we have

- [P - ro\[r, - Nfs, - 8,\[s, -1
(4-2) Fr. ) (rz - Ps)( ry ><Sz - 33)( 83 >,
where r, - r, = k', g, - s, = k.

Thus (4.2) furnishes the enumerant by blocks of length 1, 2, and 3.
If, instead of (4.1), we take

(4.3) Y, =Ys =Yg =+ =0,

we have

2 3.2 Nk k! Ey 42ty ty,, o+ 28y, b
(yl + Yy, + ylyzya) -——_—tl!tz!tslyll 2 3y22+ y ks

Bttt t=k

(8, - !
= 2 Y YRy
057, (s, - 28, + s3)!(s, = 28,)!s,!
SI—SZ =
so that
(ry -~ r)!
(4.4) f@r, s) =
(r, - 2r, + ra)!(r2 - ZPS)!Pal
(8, = 8,)!
(sl - 25, + 53)!(32— 25 )18,

the enumerant when all blocks are of length 1, 2, or 3.

5. The general cases corresponding to (4.2) and (4.4) are now readily ob-
tained. Let p be a fixed positive integer, and take

(5.1) Yper = yp+2 =+ =1,
Then we have
p-1,p-2 k
Y Y
2 . p-2,p-3 ., 1 T2 p-1
(5.2) {yl tyy, t Yyl Y, Yy, 1 - y,7, 7, }
_ . Y th
= :E: (£, Tos e tp_l)yl‘yzz
ket tpo1= k
£ t + 8 -1
Yp 1 (P Y )(ylyz Yp)®s
8=0
where
(¢, + t, + + tp-1)!
(Fas Bas vves Tpon T E,0 ... tpo1l

and
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A
El= b, + 26, + oo+ (p - DE, |
I = ® a e —
tl=t, +2t, + + @ - 2¢,_,
I i
B, =t 2,
t =t

Put

t]+s =8, (1<1<p), s

]
v2)
i)

It follows that

tp—l =8, = 5p
tp_2 =5,_, - Zsp_l + sp
G-3) bpog =Sp_3 = 28,5, T 5
t, =8, - 258, + s,.
Hence, the coefficient of yi’yiz v y;P in (5.2) is equal to
(5.4) (15 Ty cens tp_l)(sp—l - 1),
s

where ¢, tz, wees Q,_l are given by (5.3).
The enumerant f(r, §) is therefore equal to (5.4) times the correspond-
ing factor containing the r;.

Corresponding to

(5.5) yp+l 226_2 = .0 =0,
we have

(, + yoy, + o0 +yyE Tt e gk
(5.6)

= > (Eys tys oo ERYSIYSE cun Y2Ts

where now

t, + 2t, + 3t, + -++ + pty = s,
t, 2, + 3t 4 o0+ (0 - Dty = s,
t,_y + 2ty =5, ,
tp = 5;.
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This gives

tp = 8p
tp_l =8,y ~ ZSP
(5.7) tp_z =8, - 23p_l + 5
tp_3 = sp_3 - 23p_2 + sp_l
tl =8, - 232 + s,

Hence, the coefficient of yl y2 “ee y;P is the multinomial coefficient
(t15 Tys -evs tp), with the 5 determlned by (5.7). The enumerant f(r, s§) is
the product of this coefficient times the corresponding factor containing the
r;.

6. Some curious combinatorial identities are implied by the above results.
To illustrate with a simple case, we return to §3. It follows from (3.1)
that, for s; > s,, we have

s, - 1
(6.1) Dty by bys ) = ( Y, >,
where

t, = 8. - 28; + s

1 7 +1

., (G=1,2,3, ...,

and the summation is over all s,, 8, 8 e .
Similarly, from the proof of (4.2), we have, for

8, - 232 + s, > 0, s, > S,
s, - 8 s, -1
(6.2) Tt s by by, ean) = (81 3 Sz)( 2 >,
2 3 3
where
t; =8; = 28;,, t8;,, (L =1,2,3, ...),

and the summation is over all &,, sg, 8¢, .- )
The general case implied by (5 2) and (5 4) is readily stated. We have

(6.3) Yo (Eys tys by wen) = (Bys Bya oeees E;-1><3p‘;p_ 1),
where

t; =8; = 28;,, t5;,, (T =1,2,3, ...)

t; =ty (=1, ...,p - 2), %}-1 = 8,1 - 5p>

and the summation on the left of (6.3) is over all Spe1s Spios Spig>
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There are various other possibilities; for example, taking y =1 in
(3.2). However, we leave this for another occasion.
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