
14 ON RECIPROCAL SERIES RELATED TO FIBONACCI NUMBERS [Feb. 

4. R. Jerrard & N. Temperley. "Almost Perfect Numbers." Math Mag. 46 (1973): 
84-87. 

5. J.T. Cross. '"A Note on Almost Perfect Numbers/5 Math Mag. 47 (1974) :23Q-
231. 

6. P. Hagis & G„ Lord. "Quasi-Amicable Numbers." Math Camp* 31 (1977);608-
611. 

7. H. Cohen. "On Amicable and Sociable Numbers." Math Comp. 24 (1970);423-
429. 

8. P. Bratley et at. "Amicable Numbers and Their Distribution." Math Camp. 
24 (1970)i431-432. 

9. W. E, Beck &•' R. M. Najar. "More Reduced Amicable Pairs." The Fibonacci 
Quarterly 15 (1977):331-332. 

10. P. Hagis. "Lower Bounds for Relatively Prime Amicable Numbers of Opposite 
Parity." Math Compe 24 (1970):963-968. 

11. P. Hagis. "Unitary Amicable Numbers." Math Comp. 25 (1971):915-918. 
12. M. Kishore. "Odd Integer N Five Distinct Prime Factors for Which 2- 10"12 

< o(N)/N < 2•+ 10~12." Math Comp. 32 (1978);303-309. 
13. " L. E. Dickson. "Finiteness of the Odd Perfect and Primitive Abundant Num-

bering with a Distinct Prime Factor/1 Amer. J. Math, 35 (1913):413-422. 
14. P. Hagis. "A Lower Bound for the Set of Odd Perfect Numbers." Math Comp. 

27 (1973):951-953. 
15. B. Tukerman. "A Search Procedure and Lower Bound for Odd Perfect Numbers." 

Math Comp. 27 (1973):943-949. 
16. J. Benkoski & P. Erdos. "On Weird and Pseudo Perfect Numbers." Math Comp. 

28 (1974)^617-623. 
17. A. E. Zackariov. "Perfects Semi-Perfect and Ore Numbers." Bull. Soc. Mater 

Grece 13 (1972):12-22. 
18. D. Minoli & R. Bear. "Hyperfect Numbers." PME Journal (Fall 1975) , pp. 

153-157. 

ON RECIPROCAL SERIES RELATED TO FIBONACCI NUMBERS 
WITH SUBSCRIPTS IN ARITHMETIC PROGRESSION 

ROBERT P. BACKSTR0M 
Australians Atomic Energy Commission, Sutherland, NSW 2232 

1. 1MTR0VUCT10M 

Recently, interest has been shown in summing infinite series of reciprocals 
of Fibonacci numbers [1], [2], and [3]. As V. E, Hoggatt, Jr., and Marjorie 
Bicknell state [2]: "It is not easy, in general, to derive the sum of a series 
whose terms are reciprocals of Fibonacci numbers such that the subscripts are 
terms of geometric progressions." It seems even more difficult if the subscripts 
are in arithmetic progression. To take a very simple example, to my knowledge 
the series 

(i.D E f 
has not been evaluated in closed form, although Brother U. Alfred has derived 
formulas connecting it with other highly convergent series [4]. 

In this note, we develop formulas for closely related series of the form 

(1.2) 
0 Fan + b + C 
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for certain values of a, bs and ca Examples include the following: 

E p Tl = ^5/2, 
0 2n+l x 

T — i 

ip 1 

0 2n+l i J 

= 3/5/8, 

= 7/5/58 

(1.3) 

E F ^ 5 = 5/5/22, 
0 2 n + l J 

In fact9 much more than this is true. Each of these series may be further 
broken down into a remarkable set of symmetric series illustrated by the fol-
lowing examples: 

00 00 

Zy—hn-3= ( / F + 2)/58' EF—1—rn= {/5~2)/58s 
0 r 1 4 n + l T • L J 0 1 4 n + 1 3 r 1 J 

00 00 

^ F L
T - r l = (/5 + 5/3)/58, £ ^ L _ ^ = ( / s _ 5/3)758, 

0 l f n + 3 i J 0 l ' t n + l l 

( l .A) 

EF * + 13 - (̂ 5 + D/58, E g * + 13 " ( / J - 1 ) / 5 8 ' 
0 1 4 n + 5 ^ X J 0 Un+9 X J 

V ^,B+7
 + 13 /J/58. 

It will be noted that the sum of the series in (1.4) agrees with that given 
in (1.3)-—namely, 7/5~/58—-since the rational terms cancel out in pairs. Also, 
the reader will have noticed the use of c = 1, 2, 5, and 13 in these examples. 
They are, of course, the Fibonacci numbers with odd subscripts. Unfortunately, 
the methods of this note do not apply to values of o which are Fibonacci num-
bers with even subscripts. 

2. MAIN RESULTS 

The main results of this note are summarized in three theorems: Theorem I 
provides a formulation of series of the form (1.3); Theorem II gives finer re-
sults where the sums are broken down into individual series similar to those in 
(1.4); Theorem III reveals even more detailed information in the form of expli-
cit formulas for the partial sums of series in Theorem II. 

In the following discussion, it will be assumed that K represents an odd 
integer and that t is an integer in the range -(K- l)/2 to (K- l)/2 inclusive. 

Tk&gti&m I: 

0 2n-M T rK 
Th&osiem 11: 

S(K> V = E p TT- = (/5 " 5Ft/Lt)/2LK t even, 
0 *(2n + l)K + 2t + *K 

= (/5 - Lt/Ft)/2LK t odd. 
T/ieo/tem I I I : 

SN(K> *) = L v~——T~W~ = hr™ ~T~I/2LK N even* t e v e n (a> 
0 j C ( 2 n + l ) X + 2 t ~t" n K y(N+l)K + t u t / 

(continued) 
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' 5F(N+I)K+t Lt . 
-j-— - ~)I2LK N even, t odd; (b) 

' (N + l)K+t 

K {N + l)K+t 

/2LK N odd, t even; (c) 

N odd, t odd. (d) 

3 . ELEMENTARY RESULTS 

We s h a l l adopt t h e u s u a l F i b o n a c c i and Lucas number d e f i n i t i o n s : 

Fn+2 = Fn+1 + Fn w i th FQ = 0 and F± = 1; 
Ln+2 = Ln+1 + Ln W i t h ^ 0 = 2 a n d L l = l a 

We shall also employ the well-known Binet forms: 

Fn = (an - 3n)//5 and Ln = an + 3n 

where a = (1 + /5)/2 and 3 = (1 - /5)/2. Other elementary results which will 
be required include a3 = -1 and F2a = FaLa« 

4. VROGT OF MAIW RESULTS 

To prove Theorems I, II, and III, it will be sufficient to prove Theorem III 
together with several short lemmas that establish the connection with Theorems 
I and II. 

Ln ^n r -
LommcL It l im — = l im ~ — = / 5 . 
-— n •+*>£„ n-+co Ln 

Vtuoofc From t h e Bine t forms, we have 

The second p a r t fo l lows immedia te ly , s i n c e 5//5~ = /fT. 
r r 

Lmma It ~ = --^^-^ 
— ^ ^~t 

VHJOO^' Again using the Binet forms, we have 

. b ± = -VMa"* + 3"*) ̂  -/^((-l)^ + (-l)*a*) 
F-* (or* - 3~*) ((-1)*3*- (-l)*a*) 

^ -/5(3* + a*) = /Sfa* + 3') „ L ^ Q e E > D s 

(3* - a*) (a* - 3*) Ft 

Theorem II may therefore be deduced from Theorem III and Lemma 1 and taking 
the limits as N approaches infinity. Summation of the results of Theorem II 
over the K values of t ranging from -(K - l)/2 to (K - l)/2 inclusive implies 
the truth of Theorem I, since the rational terms cancel out in pairs (as guar-
anteed by Lemma 2). 

Before proceeding to the proof of Theorem III, we will need the results of 
the following four lemmas. 
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Lw«na 3 : Fa + 2b + Fa = Fa + b» Lb fo r b even. 

Vhjoofa: S ince & i s even , (a$)b = + 1 . 

RHS = {aa + b - $a + b)(ab + e b ) / / 5 

- (a a + 2 f c + a a + * « B * - 3 a + z?° ab - 3 a + 2*)/v/5~ 

= ( a a + 2 b - $a+2b + (a3)*(a« - 3 a ) ) / / 5 

= ^ + 2fc + ^ a = M S , 

ig2™Lj£: F2a + £ + Fb = Fa ° ̂ a.+ Z> f o r * Odd. 
P/iooj: Since a i s odd, (a3) a = - 1 . 

RHS = (aa - $a)(aa + b + &a + b)//5 

= (a 2 a + Zj + aa • 3 a + f e - 3 a • a a + z? - B2 a + 6)//5 
= (a2a+b - $2a + b - (aS>)a(ab - B * ) ) / / 5 

Lemma 5; La * Lh - 5Fa • F& = 2La_£ for b even. 

P/iOO^: Since 2? i s even, ( a3 ) b = + 1 . 

LHS = (aa + e a ) ( a b + 3b) - ( a a - $a)(ab - 3*) 

= a a + £> + a a • g* + 3 a - a * + 3 a + Z ? - aa + b + a a • 3* + 3 a - a* - ga + fc 

= ( a 3 ) b ( a a ~ i ) + 3 a ~ * + aa~b + $a~b) 

= 2 ( a a - k + 3a"^) = 2La_& = RHS. 

Lmma 61 La • F& - Fa » Lb = 2Fa_^ fo r 2? odd. 

VKoo^i Since 2? i s odd, (aft)* = - 1 . 

LHS = ( ( a a + 3 a ) ( a & - g*) - ( a a - &a)(ab + &b))//5 

= (aa + b ~ aa * &b + 3 a « afc - 3 a + f o - a a + 2? - a a • 3^ + 3 a • ab + 3 a + Z , ) / / 5 

= - ( a e ) b ( a a - b - &a~b + aa" f c - g a - 6 ) / / 5 

= 2(aa~& - 3a~&)//5 - 2Fa_b = RHS. 

We shall prove part (a) of Theorem III in full and leave the details of 
parts (b) , (c), and (d) to the reader, since they follow exactly the same pat-
tern. In the discussion that follows, we will assume both N and t to be even. 

We shall proceed by induction on N. 

N ~ 0 : We must prove t h a t 

i -tL<+* ^ V -
FK+2t +FK \FK+t I t ) ' " * 

Using Lemma 3 wi th a = K and b = t g ives F-K + 2t + FK = 

1 i
 LK + t * Lt ' 

-Liio — j-j T ana IVIID OE7 

Using Lemma 5 w i t h a - K + t and b = t g ives LK + t»Lt 

FR + t * L t . Hence 

~ 5FK + t ' F t = 2LK- Hence 
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Assuming that Theorem III (a) is true for N = M (where M is even) , we must 
prove it true for N = M + 2. Hence, the sum of the two extra terms on the LHS 
corresponding to N = M + 1 and N = M + 2 must equal the difference in the RHS 
formulas for N = M + 2 and N = M. Therefore, we must prove that 

1 i__ (L(M + 3)K + t 5 ^ M , fL(M + i)K + t 5 ^ \ 7 

^(2M + 3)X + 2£ + ^X (̂2M + 5)X + 2t; + ^ Z \^A/ + 3)£+£ Lt f K y(M + l)K + t L t ) * 

To simplify the following algebra, we introduce the odd integer P, where 

P = (M + l)K + £. 

This means that we must now prove that 

1 
F2P + K + ^ ^2P 

1 _(L?+2K Lp\ 
TIT ~ IF " " T~r *• 

+ 3K ^ rK VP + 2K £P J 
Using Lemma 4 with a = P and b = K gives 

F 4- F — F * T, 
r 2P + K ^ £K £P ^P + K' 

Using Lemma 3 with a = K and b = P + K gives 

F2P + 3# + Z = FP + 2K ' ^P + Kl 

LHS p r p 

= X 

F cp 

1 
• 7", ^ P + z 

and Z? 

, 1 
Px, 
r P + 2Z 

LP+K 

= P g ives 
FP + 2K + ^P : 

P • 7"/ 
r £ UP + K 

nP +K 

P+2K * P 

' Fp + 2K 

- P 
X P + 2 £ 

= E7 

Pp -

" ^ 

P 

^P + 2Z 

* p • 

P+K> 

, F s 
r p + 2is: 

+ Fp 

P p + Z * Fp + 2K 

LHS 

^ 2Fp + 2 X . F p . £ x 

Using Lemma 6 with a = P + 2Z and b - P gives 

L P + 2 Z * ^P " FP+2K # L P = ^ 2 Z = 2 F# ' L*5 

2 F L ^ * - ^ _ 
RHS - -j= ~TF . T ~ ~p . j? ~ ^HS • 

P + 2K P K rP + 2K £P 

5. EXTENSION TO LUCAS NUMBERS 

Similar results may be obtained by substituting Lucas numbers for the Fibo-
nacci numbers in (1.2). In this case, however, even subscripts are required. 
Examples equivalent to those in (1.3) include the following: 

^ £ ^ = ( 2 ^ + 1 ) / 1 ° £ 7 —Vv= (4/5 + 5/3)/30 
n L,„ + 3 v " 4 - £,„ + 7 

(5.1) 
V* 1 (6/5 + 2)/80 > T - V T T " C8^" + 15/7)/210 T L 2 n + 18 Y L 2 n + *7 
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These series may also be broken down into sub series similar to those in 
(1*4). For example: 

E l — V ^ = (/5 + 2)/80 
0 L12n + 18 

( 5 . 2 ) 
E Z ~TTs= (S5 + 5/3)/80 . £ z

 l-TT^ = (/5 - 5/3)/80 

E L VlS = ( A + 1)/8° £ L Sn8 - ( A " 1 ) /8° 

- /5 /80 
"o^ ^ 1 2 n + 6 + -^ 

Notice that, in this case, the rational terms occur in pairs except for the 
first series. This explains the presence of the residual rational terms in 
(5,1) above, 

The following three theorems (IV-V) summarize the above results* They are 
given without proof, since the methods required exactly parallel those of Sec-
tion 4. In these theorems. We assume that K is an even integer and that t is 
an integer in the range -K/2 to K/2 - 1 inclusive. 

ThdOKim 11/: 

T(K) = y ^ T ~-r- = K/5/10FK + l / 2 L | / 2 K/2 even, 
o L 2 n + LK K / z 

?2 = K/5/lOFK + l /10F* / 2 A72 odd. 

TkQ^oK.Qm (/: 

T(Z, t ) 

T'fieo/iem l/I: 

0 iv(2n + l )Z + 2t ^ ^ 

= ( /5 - L , / F t ; 

0 ^(In + DK+lt ^K 

= [ _ _ _ _ „ j / 1 0 F 
\L(N + l)K+t Lt J 

= ( * — Y-)noFx 
\r(N + l)K + t £tj 

h_ A TAMTALIZIMG PROBLEM 

t even , 

£ odd. 

If we let K = 0 in Theorem V or VI, we find that they give divergent series. 
However, if we formally substitute K = 0 into Theorem IV (without,* as yet* any 
mathematical justification), we find that the LHS is finite, namely: 

(6.1) Y ~?—V-T = *64452 17830 67274 44209 92731 19038 
0 

(to 30 decimal places). The RHS, however, contains the indeterminate form K/FR . 
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If we take the liberty of defining a Fibonacci function such as 

f(x) = (a* - (~l)*or*)//5 

= (ax - (cos TO + i sin i\x)a~x) //5 

= ((ax - cos TJX- a~x) - i sin TO • a"x)l/5 

and differentiate with respect to xs the real part becomes: 

Re[/f (x) ] = (In a • ax + TT sin TO • a~x + cos TO • In a • a~x) //5 
and 

Re[/f(0)] = (In a • 1 +TT • 0 • 1 + 1 • In a • l)//5 = 2 In a//5. 

Substituting this value into the RHS of Theorem IV gives: 

(6.2) 1/(4 In a) + 1/8 - .64452 17303 08756 88440 03306 51529 

(to 30 decimal places). The difference between the values in (6.1) and (6.2) 
is obvious, but can any reader resolve this most tantalizing problem? 

7. CONCLUSIONS 

In this note, we have established explicit formulas for a number of series 
of the form 

(7-D E7™—r^ and Y, -L , + Q 
0 ran + b + G o ^ a n + 2> ^ 

for certain values of a, 2?, and c positive. Similar results apply for c nega-
tive, but because of the possibility of a zero denominator, the series must be-
gin with the term in which an + b>K. This leads to less elegant formulas, such 
as the following: 

\^ 1 

(7.2) 

L-4 W 
0 6n + 5 

(5 - /5)/8 

(3 " Z5)/8 £ ^ _ J _ = (5/2 - /5)/8. 
0 6n+7 

Summing these three series gives 

(7.3) £ ^ — L — = (21/2 - 3/5)/8s 
2n+ 5 

where the symmetric form of (1.4) appears to have been lost. Similar results 
may be obtained using the Lucas numbers in (7.1). We leave the reader to in-
vestigate these formulas and to determine the true value of the series: 

(7.4) 
^ Ln + 2 ' 
0 2n 
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ON THE EQUATION a{m)ar{n) = (m + n)2 

MASAO KISHORE 
The University of Toledo,, Toledo, OH 43606 

1. A pair of positive integers m and n are called amicable if 

o(m)a{ri) = (772 + n)z and o(m) = cr(n). 

Although over a thousand pairs of amicable numbers are known, no pairs of rela-
tively prime amicable numbers are known. Some necessary conditions for exist-
ence of such numbers are given in [1] 9 [2], and [3]• 

In this paper9 we show that some of the conditions are also necessary for 
the existence of T?7 and n satisfying 

(1) o(m)o(n) = (77? + n ) 2 , 
and 
(2) (772, U) = 1. 

In particular we prove 

Tfceo/Lem: If 772 and n satisfy (1) and (2) 9 rnn is divisible by at least twenty-two 
distinct primes. 

QoK.oti<Vtij (Hag+A [3]): The product of relatively prime amicable numbers are di-
visible by twenty-two distinct primes. 

I. Throughout this paper, let m and n be positive integers satisfying (1) 
and (2) s and let 

V 
mn = n p"* 

i = l 
where p 1 < ••• < p a r e pr imes and t h e a^fs are positive integers. Since a is 
multiplicative, 

V 
I I a ( p ? 0 = o(mn) = (m + n)2. 

i = i z 

If k and a are positive integers, p is a prime and if p a \ k and p a + 1j[k9 then we 
write p a | |&. ud(k) denotes the number of distinct prime factors of k. 

Lmma 1: o(rnn)/mn > 4. 

P/LOOfj: By (1) and (2) 

o(mn) = (m + n) 2
 = ^ + (m - n)2

 > ^ n E D. 
rnn mn rnn 

Lojfnma 2: I f ^ i s a p r ime , q|/72rz. and i f p a | |77zn, q | a ( p a ) . 

P/LO0$: Suppose q i s a p r ime , q|7m, pa||7?2n, and g | a ( p a ) . Since 

a ( p a ) I (772 + n ) 2 , 
q|772 4- ft. Then q\m and q\n5 c o n t r a d i c t i n g ( 2 ) . Q.E.D. 


