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Therefore, NEWTON(x,.;) = SECANT(x,_;, *£,_1), and so (iii) follows from (iv).
Note that this identity holds for any polynomial equation f(x) = 0.
(iv) By (6),
a(um+1/um)(un+1/un) -

luy + vy, /u,) + D

SECANT (u,, o /u, s U, /u,) = 2, .

AU, Uy 4q = ClUmlhy,

aum+1un + aumun+1 + bumun

aum“un” - cumun

au, U, = ClhnU,_

= QUpy 441 /Up,, (by the lemma)
Re,manlu: = um+n+1/um+n° o

1. The theorem does not generalize to polynomials of degree higher than 2.

2. Not only do the ratios of the consecutive Fibonacci numbers converge to
¢, they are the '"best'" rational approximation to ¢; i.e., if n > 1, 0 < F < F,
and P/F # F,,.,/F,, then |F,, ,/F, -®| < |P/F-¢| by [4]. Since Newton's method
and the secant method produce subsequences of Fibonacci ratios, they also pro-
duce the best rational approximation to ¢.
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A CHARACTERIZATION OF THE FUNDAMENTAL SOLUTIONS TO
PELL'S EQUATION u? - Dv? =(C
M. J. DeLEON
Florida Atlantic University, Boca Raton, FL 33432
Due to a confusion originating with Euler, the diophantine equation
€] u? - pw? =0,

where D is a positive integer that is not a perfect square and C is a nonzero
integer, is usually called Pell's equation. In a previous article [1, Theorem
2], the following theorem was proved.

Theorem 1: Let z, + y,vD be the fundamental solution to x? - Dy? = 1. If k =
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1)/ (xy - 1) and if u, + v/D is a fundamental solution to u? - Dp?=-N, where
N >0, then vy = |vy| > k|ug|. If k= (Dy;)/(xy-1) and if u, + v4/D is a fun-
damental solution to u? - Dv? = N, where N > 1, then u; = |u,| > k|v,]|.

In Theorem 4, we shall prove the converse of this result. In the sequel,
the definition of a fundamental solution to Eq. (1) given in [1] will be used.
This definition differs from the one in [2, p. 205] only when v, < 0. 1In this
case, if the fundamental solution given in [1] is denoted by u, + v,vD, then
the one given by the definition in [2] would be -(u, + vy/D). We shall need to
recall Remark A of [1] and to add to the three statements of this remark the
statement:

(iv) If ¢ <1 and -u, + voV/D is in K then uy > 0. If C > 1 and u; - v,VD

is in K then v, > O.
Also, we shall need the following result (see [l, Theorem 5]).

Theonem 2: If u + v/D is a solution in nonnegative integers to the diophantine
equation u? - p? = C, where C # 1, then there exists a nonnegative integer »
such that u + v/D = (uy + vovD) (x, + y1VD)" where u, + v,/D is the fundamental
solution to the class of solutions of u2-Dv?2 = C to which u + v/D belongs and
x, + y,/D is the fundamental solution to x* - Dy? = 1.

We now need to prove a lemma and a simple consequence of this lemma.

Lemma 3: Let u, + vy/D be a fundamental solution to a class of solutions to
uZ - pv?2 =(C. 1If, for m > 1, we let u, + v, VD = (U + vo/ﬁ)(xl + yl/ﬁ)”, then
U, >0 and v, > 0 for n > 1.

Proof: Since

Uy + v1VD = (U + voVD) (@1 + y1VD) = (Uomy + Dvgyr) + (Uoy1 + vz )VD,

we have that u; = uex; + Dvyy; and vy = Ugy; + V&,

We now begin an induction proof of Lemma 3. First, suppose us - Dv% =C,
where C < 0. This implies, by Remark A [1], vy, > 0. Hence u, > 0 implies u; >
Ugy > Uy > 0 and vy > v > 0. Thus suppose ug < 0. By Theorem 1,

“UoY1 Uy (.’L‘l + 1)
vy > =
0 =2 -1 Dy,
Whence, ©; = Ugx, + Doy, > -uy > 0 and v, = uyy, + vyx, > vy, > 0. Therefore,
for ¢ < 0, uy; > 0 and v; > 0.

Next, suppose uj - Dv3 = C, where C > 0. This implies u, > 0. Thus v, > 0
implies u; > uy, > 0 and v; > vy > 0. Thus suppose v, < 0. Hence C > 1, so by
Theorem 1,

-Dvyy, =vy(x; + 1)

Uy > =
0 =x -1 Ya

Whence, ©; > uy > 0 and v; > -v, > 0. This completes the proof of Lemma 3 for
n=1.
Since

(2) (thyyy + Vyy VD) = (u, + v,VD) (x, + y,VD)
= (u,x, + Dv,y,) + (xv, + Y1)V,

the assumption u, > 0 and v, > 0 implies u ., > 0 and Vpyr > 0.

Conollary: With wu,, vy, U,, and v, defined as in Lemma 3, we have u,,, > u, and
Vyp1 > VUn for m > 0.

Proof: In the proof of Lemma 3, it was shown that v; > v, and that, in ad-
dition, for u, > 0 or C > 0 we actually have v; > v,. For the case u, < 0 and

C < 0, it follows from the proof of Lemma 3 that v, = v, implies u; = -uy. So
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-U, + vo/ﬁ.= uy, + v,/D belongs to the same class of solutions to u? - Dp? = (
as u, + vo/D. Since we are assuming uy < 0, this contradicts (iv) of Remark A
[1]. Hence, even in this case, vy > Vy. In a similar manner, it is seen that
we always have u,; > Uy. Since u, >0 and v, > 0 for n > 1, (2) implies that
Uppy > Uy and v, > v, for n > 1.

Theorem 4:  1f u + v/D is a solution in nonnegative integers to u? - Dv? = -W,
where N > 1, and if v > ku, where kK = (y;)/(xy-1), then u + /D is the funda-
mental solution of a class of solutions to u?2-Dv2=-N. If u + v/D is a solu-
tion in nonnegative integers to u2=pp? = N, where ¥ > 1, and if u > kv, where
k = (Dyy)/(xy~1), then u+v/D is the fundamental solution of a class of solu-
tions to u? - Dv? = N,

Proof: By Theorem 2, u + v/D = (4, + v,VD) (x, + y,VD)" = u, + v,/D, where
7n is a nonnegative integer and u, + vo/D is a fundamental solution to u? - Dv?
= tl. We shall prove u + vv/D = uy, + vy/D. So assume n > 1. Then we have

Uy + VD = (u,_; + v, VD) (x, + y,VD)
= (&g, ¥ Dy, y) (v, Yty 1)VD.

Thus u,_; = x,u, - Dy,v, and v,_, = -y, U, + T30,.
First, suppose u + v/D is a solution to u2 - Dv? = -N. We know that

ylun
v =0, 2 kun = .’L‘l—"'—_l'
Hence
Vpoy = YUy + 210, = (X7 = DV, = YUy + 0y 2 Uy

But by the corollary to Lemma 3, v,_, < v, for m > 1. Thus n = 0 and the proof
is complete for the case u? - Dv?2 = -l.
New, suppose u + v/D is a solution to u? - Dv? = N. We know that

Dy lvn
x, - 1"

unzkvn =

(Please turn to page 92)
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ABSTRACT

An integer m is said to be n-hyperperfect if m = 1 + n[o(@m) -m~1]. These
numbers are a natural extension of the perfect numbers, and as such share re-
markably similar properties. In this paper we investigate sufficient forms for
hyperperfect numbers.

7. INTRODUCTION

Integers having ""some type of perfection" have received considerable atten-
tion in the past few years. The most well-known cases are: perfect numbers
([11, [12], [13], [141, [15]); multiperfect numbers ([1]); quasiperfect numbers
([2]); almost perfect numbers ([3], [4], [5]); semiperfect numbers ([16], [17]);




