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Then 
4(2 - Fn) = BOA2 + 5B2) = 4 (mod 8 ) , 

because 2\Fn s i n c e (n9 6) = 1. This congruence has no s o l u t i o n s wi th A = B 
(mod 2 ) . 

Co6_e_3: 2 + Fn/5 = e j ^ a 3 . Not ing e " 1 = (1 /2) ( 1 - / 5 ) , we argue a s in Case 
2 s u s i n g i n s t e a d 

4(2 + Fn) = -BOA1 + 5B2) = 4 (mod 8 ) , 
which has no solutions with A E B (mod 2). 

Tke.on.QJfn 5: The set of Lucas numbers Ln with n > 0 of the form 2aX3 are £x = 1 
and L3 = 4 . 

PJWO&: Let Ln = 2aJ3 with n = 3ak and (fe, 3) = 1. By Lemma 29 Lk = J3 so 
by Theorems 3 and 4, /c = 1. If £ 2. 2, then Lemma 2(ii) would show L3 = 76 was 
of the form 2aX3

 s which is false. 

Rmctfik: The set of Lucas numbers of the form 2a3&J3 leads to consideration of 
the equation X3 = Y2 + .18. The only solutions to this equation are (3, ±3), 
but the available proofs (see [l]and [3]) are complicated. General methods fox-
solving the equation X3 = Y2 + K for fixed K are given in [1], [4], and [5]. 
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ABSTRACT 

It is shown that the number of states in a class of serial production or 
service systems with N servers is the (27V - l)st Fibonacci number. This has 
proved useful in designing efficient systems. 
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In studying queueing systems in series, it is useful to know precisely the 
number of different states that might occur. In particular, in [1], this num-
ber is crucial in determining approximate solutions to the allocation of a fixed 
resource to the individual servers or for scheduling servers with variable ser-
ving times. For a particular class of these problems, this number possesses an 
interesting property. 

The system can be described in general as follows: 

N (single-server) service facilities (usually corresponding to N work 
stations of a production line) are arranged in series. Customers com-
pleting service at station i proceed to station i+ 1 and commence ser-
vice there if it is free, or join a queue if the server is busy. The 
limitation on space restricts the number who can wait before station i 
to be Wj_ . If service is completed at station i and the waiting space 
before station t+1 is full, then the customer completing service can-
not advance and station i becomes "blocked." Any station that is idle 
is said to be "starved." Station 1 cannot be starved, as a customer is 
always ready for processing (raw materials) and station N can never be 
blocked. Customers are not permitted to renege (see Figure 1). 

INPUT 

SERVER 1 O O SERVER 2 • O ' - O O SERVERS 

Fig. 1 

The design problem is to consider how to divide the work among the N sta-
tions (or, equivalently, to determine the order of service) to maximize, among 
other objectives, the rate at which customers leave the system. The problem is 
complicated by having operation times that are not deterministic and are given 
only by a random variable. This optimization involves inverting a stochastic 
matrix whose dimension is the number of states in the system. Our problem here 
is to determine the number of possible states. 

Without loss of generality, we can assume that W^ = 0, i = 2, 3, . .. , N9 
that is, there is no waiting space before each server. This is done by assum-
ing each waiting space is another service station with 0 service time. Hence, 
each station can be busy (state 1) , all but station 1 can be starved (state 0), 
and all but station N can be blocked (state b) . An /l/-tuple of l!s, 0's, and b1 s 
represents a state of the system. Obviously, not all combinations are allowed, 
for instance, a "2?" must be followed by a "2?" or a "1." 

TkzoJiom: Let SN be the number of states when N servers are in series. Then 
^N = F2N -1 * 

VKOO^i When N = 2, the only possible states are (1, 1), (1, 0), (£>, 1) and 
S2 = F3 = 3. Assume that Sk = F2k-1* All possible states, when N = k + 1, can 
be generated from the Sk states as follows: catenate a "1" to the right of each 
of the Sk states [corresponding to the (?c+l)st server being busy]; catenate a 
"0"to the right of each of the Sk states; and, for each state with a "1" in the 
kth position, change this to a "2?" and. add a "1" in the (fc+l)st position. The 
states with the "1" in the kth position had been similarly generated from the 
Sk_1 states. This leads to the recursive relationship 

fc-i 
Sk + 1 = Sk +Sk + {Sk_1 + . . . + 5 l + 1) = 2F2fc -1 + X > 2 J - - i +^o 2k+l * 

j - 1 
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This result has been most useful in developing numerical procedures for 
calculating or approximating the probabilities that a server is busy, which is 
used in finding efficient designs for this class of production systems. 
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0. 1NTR0VUCT10M 

Choose a to be any r-digit integer expressed in base 10 with not all digits 
equal. Let ar be the integer formed by arranging these digits in descending 
order5 and let afl be the integer formed by arranging these digits in ascending 
order. Define T(a) = ar - a!!« When r = 3, repeated applications of T to any 
starting value a will always lead to 495, which is self-producing under T,that 
is5 T(495) = 495. Any r-digit integer exhibiting the properties that 495 ex-
hibits in the 3-digit case will be called a "Kaprekar constant." It is well 
known (see [2]) that 6174 is such a Kaprekar constant in the 4-digit case. 

In this paper we concern ourselves only with self-producing integers. Af-
ter developing some general results which hold for any base g9 we then charac-
terize all decadic self-producing integers. From this it follows that the only 
p-digit Kaprekar constants are those given above for r = 3 and 4. 

1. THE VIGITS OF T[a) 
Let r = 2n + 6, where 

6 = I* r odd 

I 0 r even. 
Let a be an r-digit g-ad±c integer of the form 

a = ^r-i^'1 + ar-29T~2 + ••• + CI-L̂  + a0 (1.1) 
with 

g > ar_i >. ar_2 >. • • • >. ax >. a09 ar_1 > a0. 
Let af be the corresponding reflected integer 

af = a^"-1 + a^"2 + • • • + ar_2g + ar_1. (1.2) 

The operation T(a) = a - af will give rise to a new p-digit integer (permitting 
leading zeros) whose digits can be arranged in descending and ascending order 
as in (1.1) and (1.2). Define 

d-n-i + l = ar-i " ai-l5 ^ = 1S 29 •••» n- (1.3) 
Thus associated with the integer a given in (1.1) is the n-tuple of differences 
D = (dn9 dn_l9 ..., dx) with g > dn >_ dn_1 J> ••• >. dx. Note that T(a) depends 
entirely upon the values of these differences. The digits of T(a) are given by 
the following9 viz.3 


