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The Jefferson method is much simpler to use and would have achieved more or
less the same overall result. At least one state recognizes the Jefferson
method in its presidential primary act.
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Dedicated in nespectful and affectionate nemembrance to the memory o4
our good friend, Ve Hoggatt, a man and a mathematician of high quality.

1. INTRODUCTION

In Horadam, Loh, and Shannon [5], a generalized Fibonacci-type sequence
{4,(x)} was defined by

{ Ao(x) =0, Al(x) =1, Az(x) =1, As(x) =x + 1, and
(1.1)
Ape) = xA, (@) = A, _, () n > 4).

The notion of a proper divisor was there extended as follows:
Definition: For any sequence {U,}, n > 1, where U, € Z or U,(x) € Z(x), the
proper divisor w, is the quantity implicitly defined, forn > 1, by w, = U, and
w, = max{d: dlUn, g.c.d. (d, w,) =1 for every m < n}.

It was then shown that

(1.2) Ay (@) = [1 wy )
and dln
(1.3) w, () = [T (4, @))"/ P

- d|n
where U(n/d) are Mobius functions.
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Elsewhere [8], Shannon, Horadam, and Loh have proved (with # replaced by
2n) that
[n- 3] g Lt o
(1.4) @) = 5 DI (F 7T 7 gz,

i=0

The background to this paper is that the authors were shown (Wilson [9],
[10]) several numerical results relating to the sets of numbers in Table 2, and
asked to establish a theoretical basis for these results. In the process, some
useful further properties of (l.4) were developed.

A particular aim of this investigation is to use the generalized Fibonacci-
type sequence to show that any integer n> 0 can be expressed as the product of
(mostly) irrational numbers in an infinite number of ways according to a speci-
fic pattern.

Besides expressing our appreciation of the stimulation provided by Wilson
([9], [10]), we wish to register our thanks to A. Hartman and R. B. Eggleton [4]
for their valuable comments, and to Professor G. E. Andrews, University of Penn-
sylvania, for the Hancock reference [3].

2. FACTORS, PROPER DIVISORS, AND TRIGONOMETRY

From (l1.4) we observe that

A,, @)
(2.1) deg.(———x——— =2n - 2
so that 4,, (1)
(2.2) — = 0

has n - 1 squares of roots

2

2
Als Ohs wues O

For notational convenience write
2 .
(2.3) B, = af =1, 2, ..., n - 1.

Since the constant term in (2.2) is (—1)”'1n, we have, from the theory of
equations, that

(2.4) n=T18;

and also, with J = 1 in the left-hand side of (2.2) that

n-1
(2.5) mo-2=9 B,.
i=1

Thus, to find the factors of any integer =n, we seek the n - 1 B; of (2.2),
which by (1.2) can be obtained from the proper divisors of Aqn(x)/x. The first
few of the Aqn(x)/x are listed in Table 1 along with their factors and proper
divisors.

For example, from Table 1, [5], and (1.2), 4, (x) has as its factors

= 2 _ .2
w,,(x) =x" - 52" + 5, wlo(x) =

-x -1, ws(x) =z2 +x -1,
w,(x) =1, w,(x) =1, and wl(ac) =1

trivially.
In the search for proper divisors, the (provable) result

deg. w,(x) = %0(n)
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TABLE 1. Factors and Proper Divisors of ALm (x)/x form =2, 3, ..., 12
n A,, (x) /[ Wy, () Other factor(s)
2 | x* -2 x? -2 A, () [z
3 % - 4x” + 3 x® - 3 Ag ()
4 | z® - 6x" + 10z% - 4 zt - 4x® + 2 Ag (%) [
5 | 2% - 8® + 21x* - 202 + 5 xz* - 527 + 5 Ay, (@)
6 | x'® - 10x® + 36x° - 56" +35x% -6 | x* - 4x® + 1 wg (%) * Ay, (x) /%
7| xt? - ;é;z°++755x8 = 702° 4 1262 | 6 gow 4 a2 g A, (@)
8 | xt* - 14x1§ + 78x1i - 22092c8 x8 - 8x62+ 20" 4 (@) )z
+ 330x® - 252z" + 84x% - 8 - 16x* + 2 16
9 | x'® - 16x** + 10522 - 3640
+ 7152% - 792x% + 462x" xz® - 6x* + 922 - 3 Wy, (@) * Ay 4 (@)

10 | x*® - 18x%® + 136x%* - 560x2 8

+
- 12022 + 9
j 2% - 8x% + 19x%

+ 1365z*° - 2002x® + 1716x° > wg (x) * 4,, () /x
- 792z* + 1650% - 10 e
11 | x2° - 202'® + 1712 - 8162*" 2t - 11x® + 4425
+ 2380x'?% - 4368x'° + 5005z° - 772% + 5527 Ay, (@)
- 3432x% + 1287x% - 220x% + 11 - 11
12 | 2% = 222%° + 2102 ° - 1140z° , ] .
+ 3876z - 8568z'? 2% - 8x% + 20x
+ 1237620 - 114402° + 6435z - 16 4 1 Wy (€) 4y, () /2

2002x"* + 286x% - 12
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TABLE 2. List of Factors for n = 2, 3, ., 14 (9 decimal places)
from Wilson [9]
2. a 2.000000000 9. a 3.879385241 £ 2.000000000
b 3.532088884 g 1.482361911
3. a 3.000000000 ¢ 3.000000000 h 1.000000000
b 1.000000000 d 2.347296348 i 0.585786437
e 1.652703651 i 0.267949192
4. a 3.414213562 £ 1.000000000 k 0.068148347
b 2.000000000 g 0.467911115
c 0.585786437 h 0.120614758 13. a 3.941883635
b 3.770912051
5. a 3.618033989 A ¢ 3.49702149
b 2.618033989 c 3'175570503 d 3.136129492
¢ 1.381966010 4 2.618033989 e 2.709209771
d 0.381966010 . f 2.241073362
e 2.000000000
£ 1.381966010 g 1.758926637
6. a 3.732050807 0.824429496 h 1.290790228
b 3.000000000 % 0.?819660i0 i 0.863870507
¢ 2.000000000 i 00697886966 j 0.502978505
d 1.000000000 - k 0.229087948
e 0.267949192 11. a 3.918985948 1 0.058116364
b 3.682507069
7. a 3.801937736 c 3.309721461 14. a 3.949855824
b 3.246979612 d 2.830830027 b 3.801937736
¢ 2.445041864 e 2.284629680 c 3.563662962
d 1.554958135 £f 1.715370319 d 3.246979612
e 0.753020387 g 1.169169972 e 2.867767476
f 0.198062263 h 0.690278538 f 2.445041864
i 0.317492930 g 2.000000000
8. a 3.847759064 j 0.081014051 h 1.554958135
b 3.414213562 i 1.132232523
c 2.765366862 12. a 3.931851652 j 0.753020387
d 2.000000000 b 3.732050807 k 0.436337037
e 1.234633137 c 3.414213562 1 0.198062263
f 0.585786437 d 3.000000000 m 0.050144175
g 0.152240935 e 2.517638088
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where ¢(n) is Euler's ¢-function, is useful. E.g., deg. w,,(x) = 4 = %$(20).
From (1.2) and (2.3),

Aqn(x) :
—_— = [] wd(x) n > 2, since w,(x) =«
& d|4n
n-1
(2.6) = I1 &* - 8;)
j=1
whence
A, (x)
T = I v, 0 n>2
z=0 d|4n
n-1
(2.7) = - [18; from (2.6)
Jj=1
= (-1)""'n from (2.4).
Consider, as an example, the case n = 5, i.e.,
A, (x) 4
20
5 o= = B,
L x=0 j[ll J

from (2.7). Then the factors of 5 are given by the B; of

x* = 5z® + 5 = (2® - 5(5 +V/5))(x® - %(5 -V5)) =w,, @)
(x> - 3.618033989) (x* - 1.381966010)
(x® - B,)(x* - By)

and
@ -2 - D@ +z-1) =z - 3> +1=w,@w,)
= (2 - %3 + V/5))(x? - %(3 - V5))
= (x? - 2.618033989) (z®> - 0.381966010)
= (@ - B, - B,),
that is,

5 = 8,8,8,8,
where the subscript labelling of the irrational B's has been chosen to corre-
spond to the decreasing order of magnitude given by Wilson [9], and where
numerical calculations have been computed by pocket calculator to nine decimal
places.

Our B, have a simple trigonometrical expression. From [8] and (1.4),

(2.8) Apn (22) = Uy () n>2, U, =1

where U, (x) is the Chebyshev polynomial of the second kind (Magnus, Oberhettin-
ger, and Soni [7]). That is,

Akn(Zx) ) UZH_l(x)

(2.9) ™ p n>1
Solving
i _sin(n + 1)6 _
(2.10) U, (cos 6) ~—ino 0
for 6 gives
km

6 =

n+1
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Therefore, the n ~ 1 B; of (2.2) are simply

(2.11) By = 4 cos® = (L =1, 2, ooy n = 1).
O0f course, (2.4) with the B; given by (2.11), is a known result (see, e.g.,
Durell and Robson [1]).

In the example following (2.7), where n = 5, we have
i

m - 2 T - 2 31 = 2 21
10° 82 4 cos s 63 4 cos 10° Bu 4 cos S -

Bl = 4 cos?

Wilson's a, b, ¢, ... in Table 2 are Bys Bys Bys one
Clearly, from (2.11),
(2.12) 87, + Bp-z = 4.

Polynomials 4,,_, (x) satisfy the identity previously established in [5],
namely,

(2.13) Appir1 (@) = Aypur (@) +4,, (),

so the polynomials 4, (x) for n odd are the sum of two consecutive Chebyshev
polynomials.
Moreover,

(2.14) Ay @) = Fy (@)

in the notation of Hancock [3], about which further comments will be made later.

3. GENERATION OF IRRATIONAL FACTORS OF INTEGERS

One of our main results is Theorem 1 (below) relating to the system of
equations satisfied by the B; (= a%).

Lemma 1:
"= s(2n - 4 - 1 ;
(3.1) ns(2, n) = Z (_]_)J( J57 )22n— 24-3
in which J=0
1 if 2]n,
(3.2) §(2, n) =
0 if 2fn.

Prood: Equation (1.72) of Gould [2] states that

(2] |
f:(—l)k(” X k)z”-Zk =n+ 1.
k=0

Algebraic manipulation of this equation yields

o if2n - g -1 i
2n = -1 J( _‘ - )2271—25-1
Z_O< ) 3
J
so

N
]

-1 .
PRSI S PR b
=0 J

i - -1 -
D™+ 3 (—1)3( 57 )22”'2J‘2,
that is, 7=0

n-2 3 . .
SRS COH G 1)2-’-”- 23-2,
J=0
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whence ne2 )
no(2,m) = 3. (-l)j(Z” - J- 1)2

y P J
since n + (-1)"n = 218(2, n). ° 0

A (x)
Iﬁeonem ]: The n - 1 a? of - m;
af - a2 o+ +(-1) 02, =
a; - u; + + (-1) u;_l =
(3.3)
Otin_z OL2”~2 + + ( l)nufﬁlz
Proo4: To solve (2.2), consider the n - 1 a% (z
n-1 .
0 =73 (-1'"*4,, ;) /0,
=1
O isia( - - L ;
= 2: 2:(—1)L+J_1( J )a%n—ZJ-Z from (1
i=1 =0 J ¢
n-1 n-1 .
=Y ¥ (P T e
=0 {0 J ¢
n-2 n-1 L. 2 - J -1 3 n-1 A
= Z Z (_1)’L+J-l< J )a;n— 2(J +1) + 2 (_1)14—
j=0 71=1 =1
e (2 - F - IV, ;
= Z (—1)‘7( Jij )E(—l)t'locfin_zwﬂ) - n8(2, n
Jj=0 i=1
ni‘:z if(2n - g -1 ,%;_‘”1 i-1_2n-2(+1) ’f
S IRl G D IS PR A I DECED
j=0 dJ 7?‘-:41 ¢ Jj=0

2

23

22m=3

= ]" 2’ 3

)

n-2 n 0
(n - 1)%

) by (3

j(Zn -4 -1

J

[Aug.

= 0 satisfy the system of equations

.2)

)22n—2j-3

by Lemma 1

from which it follows that, with a slight variation in the set of values of j,

n-1
E(_l)i—lqin-zj = 2271—2;1'-1 J =1,
i=1

which is the system of equations (3.3).

2y v, M -

L,

Tlustration of Theorem 1: Theorem 1 tells us that there are 2 B, of

AlQ(x)
=" -4z +3 =0
which satisfy (3.3) when n = 3, i.e., B, - B, = 2, Bi - Bg = 2%, namely,
(3.4) 8, =3 =4 cos? %3 B, = 1 = 4 cos? %u
Agy ()
Also, there are 5 B; of - = 0 which satisfy (3.3) when n = 6, i.e.,
5 . . .
2 (-DFred = 229t G=1,2, .ee, 5,
i=1
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namely, ~
{ B, = 3.732050807 = 2 + V3 = 4 cos® %%3 g, = 3.000000000,
(3.5) .
B, = 2.000000000, B, = 1.000000000, By = 0.267949192 = 2 - V3,
as can be seen in the entry for » = 6 in Table 2.
Ase(x)

. Similarly, there are 8 B, of
i.e.,

8 .
Z (_l)i—lgf - 22j—l
i=1

J
namely,
B, = 3.8793385241 = 4 cos® 1, B, =
(3.6) B, = 2.347296348, By = 1.652703651,
8, = 0.467911115, B, = 0.120614758,

as can be seen in the entry for =
From (3.4), (3.5), and (3

3 = B,B,

= B1B,8,Bs
B,B,8,B.8,8,
Notice that every B;, for which

it

(and so omn).

ucts. This is the gist of (3.9).
3 = B,B, n =
= B,B, n =
= 8,8, n =

and so on.)
Elementary trigonometry with (2.6) and (2

(3.7)

= 0 which satisfy (3.3) when n

Ay, (@) /2 + (—l)"{Akn((4 - xz)%)}/x

9,

3.532088884, B, = 3.000000000,
B, = 1.000000000,

9 in Table 2.
.6), we observe that

n =
n==6
n =9

31i, does not occur in the prod-

(Other combinations are possible, e.g.,

6
9
12

.11) may be used to show that
0

where, by the second term in (3.7) is meant the expression for 4,, (x)/x when x?

is replaced by 4 - x?%.
If (3.7)

is treated from a combinatorial number theory point of view, we

have, on using (1.4) and the binomial expansion for (4 - x2)""1"9 and then con-

sidering the coefficient of x?"~272P

" n -1
p—

2n -1 -4

(3.8) P

-1
(_l)J 22(p“j) (
=0

)

dJ

for every p < mn - 1.

, the result

- j) _ (Zn -1-p
J p

)

This identity is very similar to result (3.44) in Gould [2].
The next (known) result is important for Table 2:

n-1
(3.9) il}lsi =r r]n, Bj+l < Bj (=1, cocs m = 2).
rfi
k-1 k-1 .
To prove (3.9), divide (2.4) by [] Bpy = [ﬂ Bf = k where Bf = 4cosz-%% and
=1 =1
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n=rk, i.e., r|n, i.e., r|21. E.g., n = 8 in Table 2 gives
7
2 =11 B, = BiB;BsB, with 2 = B,B, = B,
i v
204
Refer also to the Illustration of Theorem 1 on page 244 above.
From (3.9), and, earlier, (3.4), (3.5), and (3.6), it is clear that the se-
quence (1.1) shows how any integer (>0) may be expressed as a product of (most-

ly) irrational numbers in an infinite number of ways, in accordance with a pat-
tern of generation.

L. MISCELLANEOUS RESULTS

Results (4.1)-(4.5), which are stated without proof, may be derived from
(1.2) and (2.11). ,

Aqn(x) % Ay, (@) Bqn(x) ’ n odd
(4.1) — =<
4, (x)
T * B, (x) n even

where B,, (x) = w,, (x) x (some product of proper divisors depending on the fac-
tors of n).

Some particular instances of (4.1) are shown in Table 1.

Consider again the transformation x? + 4 - x2®. This has the following ef-
fects:

n odd
(4.2) Boi = Boi_1 in reverse order (and conversely), so
(4.3) A,, (x) <+ B, (x)
n o even
4k AZn(x) +%-A2n(x)
(4.4) _
(4.5) B,, @) <+ B, (x).

Previously, in (2.14), we mentioned the connection between our 4,,,;(x) and
f;(x) in Hancock [3]. It is instructive to compare in detail our treatment,
where the motivation originated from combinatorial and number theoretic consid-
erations, with Hancock's approach to somewhat similar material through cyclo-
tomy and trigonometry. ‘ '

However, to conserve space, we merely indicate without justification some
comparisons of interest as well as some fresh properties of 4,(x). Familiarity
with Hancock's notation is assumed.

Observe, firstly that our

AZn(x)’ A’-&n+2(m)’ BH(2n+1)(x)’ and xBR(2n+l)(x) + 2
are, respectively, Hancock's
Ay (@), U, (x)s &, (%), and F, _,(x).

Further, we note that
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Appar (@) = Ay (2) = f(x) = (-1)" F, (-x)
5(F,_ (@) + F,_, (@)
; fk (x) = A2n+2(x) -1

=1
while some fresh results are
Aypen @) = A5, 4, @) - A3, (@)
4.7) A,,(2) =n

A2n+l(2) =n + 1.

(4.6) 4, (x)

2n

5. CONCLUDING COMMENTS

Newton's iteration can be used to solve the system of equations (3.3). Al-
ternatively, the problem may be approached through the theory of recurring se-
quences.

Using the notation of Jarden [6], we may consider equation (2.2), with x
replaced by /@} as the auxiliary equation of the homogeneous linear recurrence
relation of order m - 1:

(5.1) S SIS o A P
. ) o J m-j )
where /
n-1 X
(5.2) WP = Y (-1)F ]
t=1

is the general term of the recurring sequence {w$' )} defined by (5.1) with
the initial conditions (3.3). Thus, when n = 3, (2.2) becomes

¥ - 42> +3 =0

which can be rewritten as

1

y> -4y +3 =0

i.e., the auxiliary equation for (5.1) in the form

(2) _ (2) _ (2)
w, = 4wm_l 3wm_2.

Initial conditions are
(2) - =
Wy =B, -8, =2
and
wi? =2 - g2 = 23,
Finally, it is worth noting that the theoretical foundations for the ideas
implicit in [9] and [10] have by no means been fully exploited.
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To the memorny of Vernmen E. Hoggatt, Jn.

One of the most popular and recurrent recent methods for the study of the
Fibonacci sequence is to define the so-called Fibonacci @-matrix

11
(1 Q= ( )
1 0

so that

Fn+1 Fn
(2) Qr = ( )
Fn Fn—l

where F,,, = F, + F,_,, with F; =1, Fy = 0.
Theorems may then be cited from linear algebra so as to give speedy proofs
of Fibonacci formulas. Write |A| for the determinant of a matrix 4. Then it

is well known that |AB| = |4] < [B|, and in general [4"| = |A|". The Fibonacci
@-matrix method then gives at once the famous formula
3) F-,L+1Fn_1 - Fy% = ("I)HS

which was first given by Robert Simson in 1753. Formula (3) is the basis for
the well-known geometrical paradox attributed to Lewis Carroll in which a unit
of area mysteriously appears or disappears upon dissecting a suitable square
and reassembling into a rectangle.

Where did this @-matrix method originate? The object of the present paper
is to give a tentative answer to this question, and present a reasonably com-
plete bibliography of papers bearing on the use of such a matrix for the study
of Fibonacci numbers. An unsolved problem is included.

The phrase "@-matrix'" seems to have originated in the master's thesis of
Charles King [10]. At least, Basin and Hoggatt [16] cite this source, and from
then on the idea caught on like wildfire among Fibonacci enthusiasts. Numerous
papers have appeared in our Fibonacci Quarterly authored by Hoggatt and/or his
students and other collaborators where the @-matrix method became a central
tool in the analysis of Fibonacci properties. Vern Hoggatt carried on a far-
ranging correspondence in which he jotted down ideas and made innumerable sug-
gestions for further research. For example, his letters to me make up a foot-
high stack of paper very nearly, representing creative thinking going on for 20



