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Q 2 ^ = (2 - tt)2Wn = (4 - 4Q + Q2)Wn = Wn - kWn + ft2Fn. 

This result can be verified d.irectly through substitution by (1), (9) , and (12), 
recalling that Pn = QWn and tt2Wn - Q2Wn. Once again, by induction on A, i t is 
easily shown that 

(28) TixWn = (2 - Q)xWn. 

It remains open to conjecture whether an examination of various permuta-
tions of the operators Q and Q9 together with the operator A (defined in [4]) 
and its conjugate A, will lead to further interesting relationships for higher-
order quaternions. 
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ON THE CONVERGENCE OF ITERATED EXPONENTIATION—11* 

MICHAEL CREUTZ and R. M. STERNHE1MER 
Brookhaven National Laboratory, Upton, NY 11973 

In a previous paper [1], we have discussed the properties of the function 
fix) defined as: 

X 

(1) /(x) = x*x 

and a generalization of f(x)9 namely [2, 3], 

(2) Fn(x) -g^x)9*™ = E gA*). 
3 = 1 J 

where the g^ix) are functions of a positive real variable x9 and the symbol H 
is used to denote the iterated exponentiation [4]. For both (1) and (2), the 
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ordering of the exponentiations is important; here and throughout this paper, 
we mean a bracketing order "from the top down" e.g., for (2), gn_1 raised to 
the power gn , followed by gn_2 raised to the resulting power, all the way down 
to glm It was shown in [1] that / converges as the number of x1 s in (1) in-
creases for x from e~e = 0.065988.., to e1/e = 1.444668... . For x > e1/e

9 f is 
divergent, and for x < e~e , the function / is "dual convergent," i.e., it con-
verges to two different values according as the number of x1 s [ovn in (2)] is 
even or odd. If the number of x%s is even, one obtains a curve of f(x) which 
increases from 1/e at x = e~e to / = 1 at'a; = 0, and if the number of ̂ Ts is 
odd, one obtains a second curve of f(x) which decreases from the unique value 
f(e~e) = l/e = 0.36788 to f(0) = 0 at x = 0. Typical values of the limiting 
f(x) in the region 0 < x < e~e are: /(0.02) s 0.03146 (odd number n of x1 s) 
and /(0.02) = 0.88419 (even n); also /(0.04) = 0.08960 (odd n), 0.74945 (even 
n); /(0.06) = 0.21690 (odd n) , 0.54323 (even n), The property of dual conver-
gence has been shown in [1] and [3] to be a general property of the function 
Fn(x) of (2), when g^{x) is a decreasing function of J for fixed x9 e.g., the 
function g. (x) = x/j2, for which Fn(x) is shown in Fig. 3 of [1], 

In the present paper we consider a particularly simple generalization of 
the function f(x), namely the function F(x9 y) defined as: 

.*» 

(3) F(x9 y) = X**' 

where an infinite number of exponentiations is understood, and x is at the 
bottom of the "ladder." Thus, F(x9 y) corresponds to the limit of Fn(x) as 
n -> °°  in (2), where gd (x) = x for j = odd, and g3-(,x) = y for j = even. Both 
x and y are assumed to be positive (real) quantities. Depending upon the 
values of x and y9 F(x9 y) can be monoconvergent, dual convergent, or diver-
gent. For the special case x = y, F(x9 x) = f(x) of (1), which is monoconver-
gent in the range e~e < x < e1/e, as discussed above. Also, we have F(x9 1) = 
x9 F(l, y) = 1; F(x9 0) = 1, F(09 y) = 0, for finite x and y. We now consider 
the case where x > 1. We also expand the definition of F(x9 y) to include the 
function 

(4) F(y9 x) = F'(x9 y) = y*"' 
where y is at the bottom of the "ladder." 

By enlarging the definition of F(x9 y) to include the function F (y, x) , 
we obtain the following three convergence possibilities: 

7. VliaZ conVQJig&nce.9 when F(x9 y) converges to a well-defined value re-
gardless of whether the number of x1 s in the "ladder" is even or odd. In this 
case F(y9 x) also converges to a well-defined value. Because of the total of 
two values involved [F(y9 x)^F(x9 y)~\ 9 We have called this possibility "dual 
convergence." 

1, QuadJiLconvQJig&nc£9 when F(x, y) converges to tu)o well-defined values 
depending upon whether the number of x's in the "ladder" is even or odd. In 
this case F(y, x) also converges to two well-defined values, again depending 
upon whether the number of ̂ 'sand^'s in the "ladder" is even or odd. Because 
of the total of four values of the functions F(x9 y) and F(y9 x) , we have 
called this possibility "quadriconvergence. " However, it should be realized 
that the quadriconvergence corresponds to the dual convergence of both F(xs y) 
and F(y9 x) in the sense defined in [1] and [3], 

3. VA\)QJIQQJI(LZ9 in which case both F(x9 y) and F(y9 x) diverge as the 
number of #Ts and T/'S in (3) and (4) is increased indefinitely. In Figs. 1 
and 3 and in Table 1, we have abbreviated dual convergence as D.C., quadri-
convergence as Q.C., and divergence as Div. 
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Fig. 1. The curve of the limiting y value ylim as a function of x for x > 1, 
such that for y > y 1±m , the function F(x, y) is divergent and for y <_ y , 
F(x, y) is dual convergent, i.e., it converges to two values F]L and F2 de-
pending upon whether x or y is at the bottom of the "ladder" in (3) and (4) . 
The point x = e1/e = 1*444668, for which y1^= x has been marked on the ab-
scissa axis. 

1 lim 

Fig. 2. The functions Gx = xy and G2 = F plotted vs F. The two curves of G1 
pertain to x=1.3, y=1.5, and x=1.3, y = 1.6525, respectively. The curve 
of G1(1.3, 1.5) intersects the 45° line G2= F at the two points Fa) = 1.679 
and FV = 4.184, whose significance is explained in the text. The curve of 
G1(l.3, 1.6525) is tangent to the G2 = F line at F = 2.304. Note that 1.6525 
is the value of y1±m pertaining to x = 1.3. 
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Table 1. A listing of the values of F' (x, y) for several illustrative choices 
of x and y. The third column indicates whether the function F(x,y) is dual 
convergent or quadriconvergent. For dual convergence, the two values of F± 
and F2 are listed, which correspond to F of (3) and FT of (4) , with x at the 
bottom of the "ladder" and y at the bottom of the "ladder/' respectively. 
Thus we have F1 = xFl and F2 = yFK For the cases of quadriconvergence, four 
values Flf F2, F3, and Fh are listed, where the relations between the Fi are 
given by (23) . The last column of the table lists the value of y1±m for the 
x value considered. For 0<x<l, y1±m defines the boundary between the re-
gions of dual convergence and quadriconvergence (see Fig. 3). For x > 1, £/,. 
defines the boundary between the dual convergence region and the region where 
F(x, y) is divergent (see Fig. 1) . 

X 

0.2 
0.2 
0.2 
0.4 
0.4 
0.4 
0.7 
0.7 
0.7 
0.9 
0.9 
0.9 

1.05 
1.10 
1.20 
1.30 
1.40 

y 

60 
150 

109000 
20 
30 

1,000 
10 
25 

1,000 
15 
30 

19000 

3.80 
2.40 
1.80 
1.50 
1.46 

Conv. 

D.C. 
Q.C. 
Q.C. 
D.C. 
Q.C. 
Q.C. 
D.C. 
Q.C. 
Q.C. 
D.C. 
Q.C. 
Q.C. 

D.C. 
D.C. 
D.C. 
D.C. 
D.C. 

Fi 

0.09398 
0.14901 
0.19988 
0.19414 
0.31046 
0.40000 
0.40447 
0.65509 
0.70000 
0.59224 
0.82743 
0.90000 

1.3379 
1.3732 
1.5914 
1.6792 
2.1154 

F 
C 2 

1.4693 
2.1099 
6.3028 
1.7889 
2.8747 
15.849 
2.5379 
8.2371 

125.89 
4.9719 
16.681 

501.19 

5.9658 
3.3274 
2.5482 
1.9756 
2.2267 

0, 
3, 

0, 
4, 

0, 
3, 

0, 
1, 

^3 

.03352 

.93 xl0~5 

.07179 

.93 xlO"7 

.05297 

.16 xlO""20 

.17248 

.167x 10~23 

F, 

1.1829 
1.00036 

1.2766 
1.0000 

1.1859 
1.0000 

1.7979 
1.0000 

^lim 

107.0 
107.0 
107.0 
24.02 
24.02 
24.02 
15.16 
15.16 
15.16 
21.55 
21.55 
21.55 

4.1232 
2.7497 
1.9514 
1.6527 
1.4940 

In this connection, it should be pointed out that for x £ y, if there is 
convergence, the minimum number of values obtained is two, namely F and Fr, 
and we have the following obvious relations: 

*F'(x,y) 
(5) 

(6) 

The curve of y1±m vs x 

F(x, y) 
Fr(x9 y) 
for x > 1 

y 
F(x,y) e 

is shown in Fig. 1, where yiim is the 
limiting value of y for convergence. This curve was obtained from the follow-
ing equation derivable directly from (3): 

(7) Fix, y) = x^'-'K 
To obtain y1±m as a function of x9 the following procedure was employed using 
a Hewlett-Packard calculator. Consider the plane (F9 G), with F along the ab-
scissa and G along the ordinate. For a given value of x and a trial value of 
y9 the curve £ = xyF was plotted as a function of F. This is an increasing 
function of F9 since x > 1 and y > 1. Thus, for F = 0, yF = 1, G1 = x9 and 
the curve is concave upward as F is increased to positive values. The inter-
section of this upward curve with the straight line G2 = F is then searched 
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for. If y is too large and, hence, if xy is too large, the curve Gx will not 
intersect the 45°  line G2 = F (which starts at zero for F = 0) . Thus, this 
value of y will be larger than y 1±m » and the function F(x, y) diverges, and 
of course also Fr(x9y). If y is made appreciably smaller, the curve of G± will 
rise more slowly and will generally intersect the 45°  line G2 = F at two values 
of F, It can be shown that the lower value of F gives the correct^ as obtained 
by continued exponentiation, and the corresponding value of Fr is given by 

Fr = y F . 
Finally, for a certain intermediate value of y9 the curve xy vs F will be just 
tangent to the 45°  line G2 = F. This value of y is the limiting value y lim , 
which we have plotted in Fig. 1 as a function of x. An illustration of the 
possible relationships In the G vs F plane is shown in Fig. 2, for the case 
x = 1.3, for which y1±m = 1.6525. Thus, Fig. 2 shows that the derivative of G± 
at the tangent point must be +1. Thus: 

m = +1. dF 

This condition, together with the equation 

(9) xyF=F9 

can be used to d e r i v e e q u a t i o n s fo r x and y9 given t h e assumed v a l u e of F. We 
o b t a i n , from ( 8 ) , 

(10) ~^xyF= -^ exp{log ar[exp(F l o g y ) ] } = F ^ K l o g x [exp(F log y)]} = + 1 , 

whence: 

(11) - = log x ^[exp(F log y)1 = log # log y exp(F log y) . 

But from (9) , we find 

(12) F = xyF= xexP(F1°gz/> = exp[log x exp(F log y)], 

so that 

(13) log F = log x exp(F log y). 

Upon dividing (11) by (13), we obtain 

(14) FT^T=l o g y' 
which gives 

(15) y = expd/F log F). 
In order to obtain the corresponding equation for x, we note that from (12) 

and (15), 

(16) log F = logxyF = log x exp(l/log F) , 

which gives: 

(17) log x = log F exp(-l/log F), 

(18) x = exp[log F exp(-l/log F)] = exp[log F/exp(l/log F)]. 

For the case where one of the quantities, say x, is less than 1, but where 
y can be large, and still keeping y > 1, we have a somewhat different situa-
tion. In this case, the function G± = xyF is a decreasing function of F9 start-
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ing at G1 = x for F = 0 and going down to xy (< x) at F = 1. Thus, the curve 
of Gx vs F will always intersect the 45°  line G2 = F at a value of F < 1. It 
can then be shown that the functions F and Ff must be quadriconvergent if the 
negative slope dxyF/dF at xyF= F is algebraically smaller than -1. Thus, the 
limiting curve of ylim vs x which separates the regions of dual and quadricon-
vergence is obtained from the following pair of equations: 

dxyF, (19) dF 

(20) F. 

Thus, if the slope < -1, we will have quadriconvergence, whereas for 

(dxyF/dF^ > -1, we will have dual convergence. 

Now we note that (19) and (20) are remarkably similar to (8) and (9), the 
only difference being the change of sign in (19) as compared to (8). We thus 
obtain the following equations for x and y for the limiting curve (i.e., y = 
y lim ) • 
(21) x = exp[ logF exp(l / log F)]9 

(22) y = exp(-l /F log F) . 

By means of these equations, we have obtained the plot of y vs x of Fig. 3. 

~i r 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
x 

Fig. 3. The curve of log1Qy1±m as a function of x for 0<x< 1. For y <_ y l±m f 
the function F(x, y) is dual convergent, i.e. , it converges to two values Fx 
and F2f depending on whether x or y is at the bottom of the "ladder" in (3) 
and (4). For y > y , F(x, y) is quadriconvergent, i.e., it converges to 
two values each for both x and y at the bottom of the "ladder" in (3) and 
(4); thus, it converges to four values altogether [see (23) and (24)]. The 
dashed horizontal line log10y - log1Q(ee) - log1Q15.15421 is tangent to the 
curve at the point x = e~1/e = 0.692201. 



332 ON THE CONVERGENCE OF ITERATED EXPONENTIATION—1 I [Oct. 

By letting F' - z/Fvary from F' = 1 to large Ff, we cover the range x = 0 
to x = 1. (Note that z/ > 1 is assumed.) The regions of dual convergence and 
quadriconvergence are indicated as D.C. and Q.C., respectively. We note that 
regardless of x in the range 0 to 1 the functions F and Fr will each converge 
to a single value, provided that y < ee = 15.154. The line y - ee is marked 
as a dashed line and the curve of y vs x is tangent to this line at the point 
x = e~^e = 0.6922. This value of x is just the reciprocal of the value xT = 
e1/e which is the limit of convergence of the function f(x) = F(x9 x) which has 
been discussed in [1] - [3], We also note that the minimum value of z/lim for 
x < 1, namely 2/llm= &e, is just the reciprocal of the value x = e~e = 0.065988, 
below which the function f(x) becomes dual convergent, as has been shown in [1] . 
The value of f(x = e~e) is l/e. The curve of y1±m vs x is asymptotic to the 
vertical lines x = 0 and x = 1 in Fig. 3. 

Values of the functions F{x9y) and Fr(x9y) have been calculated by means 
of iterated exponentiation on a Hewlett-Packard calculator. We have considered 
a large number of combinations {x9 y) , both on the limiting curve (x9 y lim ) 
where the convergence is slow and away from the limiting curve (x9 £/lim) where 
the convergence is much faster. (The computing program was designed to carry 
out up to 1600 exponentiations, if necessary.) A few typical values exhibit-
ing both dual and quadriconvergence have been tabulated in Table 1. For the 
readerTs convenience, we have listed the value of y1±m pertaining to the x value 
in each entry. Also, the notation D.C. or Q.C. has been included. 

For the case of quadriconvergence, we have listed in Table 1 four values 
denoted by F1, F2, F3, and Fh. In order to make the identification of the F± 
(i = 1 - 4) with the functions F{x9 y) and Fr(x, y) introduced above in (3) 
and (4), we note that we have the following relations: 

(23) yF* = F2, xF> = F3, yF* = F^ XF, = F^9 

so that we can write 

(24) F1 =Fa, F2 = FJ, F3 - Fb , Fh = * - . 

Both Fx and F3 are functions of the type F with x at the bottom of the 
"ladder" [see.(3)], and they are therefore denoted by Fa and Fb 9 respectively. 
Similarly, F2 and Fh are functions of the type F' with y at the bottom of the 
"ladder" [see (4)], and they are therefore denoted by FJ and F£, respectively. 
In view of (23) and (24), we see that the quadriconvergence for y > y (and 
x < 1) is actually the analog of the dual convergence observed in [1] and [3] 
for functions of one variable (x) only, since the functions Fa and Fh which 
have the same definition take on two different values, and similarly for Fr 

and FJ. b 
For the case of dual convergence of F(x9y) and Fr(x9y) which occurs when 

y <_ y lim , the two functions F1 and F2 of Table 1 can be simply identified as 
F± = F and F2 = F' of (3) and (4). 

In Table 1, we have included a few cases with y very large (for x < 1), 
namely, y = 10,000 for x = 0.2 and y = 1,000 for x = 0.4, 0.7, and 0.9. The 
reason is that, in the limiting case, of large y, the following equations hold 
to a very high accuracy, as is shown by the entries in Table 1: 

(25) F± - x, F2 * y * 9 F3 « 0, F^ - 1. 
The above equations can be derived very simply by noting that starting with a 
value F1 = x9 we have F2 - yx, and if yx is large enough, F3 = x^yX^ will be 
very small (i.e., * 0) for x < 1, and hence, F^ = y° = 1, and the next value 
to be denoted by F5 is: F5 * x1 = x, i.e., F has the value assumed above for 
F19 so that the four equations of (25) are mutually consistent, provided that 
yx » 1, so that x^^ * 0. 
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Before leaving this discussion of the functions / and F,we wish to point 
out an interesting property. First, considering the function F at the tangency 
point x = e~1/e (see Fig. 3), for the two values of F at x = e"1/e = 0.692200, 
y = ee = 15.1542, we find Ff(x, y) = es and F(x9 y) = xF'= l/e. Furthermore, 
for the function f(x) at the point a; = e~e = 0.065988, we find the single value 
/(re = e~e) = l/e9 whereas at the other extreme of the region of convergence, 
namely, x = e1/e , we find f(x) - e* Thus, the six quantities 

e9 1/e, e11* , e~1,e , ee, and e"e 

are directly involved in the results obtained for the functions f (x) and F(x9 y) 
at certain special points x and y, 

Finally we will consider a generalization of the functions f(x) andF(x9 y) 
to be denoted fN(x) and FN(xs y) 9 respectively. We first define fN(x) by the 
equation 

(26) fg (x) = xx* 
where N is an arbitrary positive quantity, and we are interested in the limit 
of an infinite number of x's in the "ladder." Again, the bracketing order is 
as usual "from the top down." Now for N = x9 we find fx(x) = fix) as before. 
It can be shown that for x > 1, if N is too large, the function fN(&) diverges 
even though x lies in the range Kx< e1/e for which the simpler function f(x) 
converges. In order to obtain the limitation on N9 we consider the plane of 
G vs f as shown in Fig. 4. The line G2 = f is the 45°  straight line in this 
figure. In addition, we have plotted the function G1(x) = x? for two differ-
ent values of x9 namely, x= 1.35 and x = e1/e= 1.444668. For x = elle , G± (x). is 
just tangent to the straight line G2 = / at / = e. However, for x = 1.35, 
G-,(x) intersects the line Gz = f at two values of /, namely, f ^ = 1.6318 and 
^2) = 5.934. xhe value f ^ corresponds to the simple function f(x = 1.35). 
We now note that in the region of /, 1.6318 < f < 5.934, we have 1.35 < /, as 
shown by Fig. 4. It is therefore easy to show that if N <_ 5.934, the function 
fN(x) of (26) converges simply to the value f(x=l.35) = 1.6318. On the other 
hand, for N > 5.934, we have 1.35^ > N9 so that as we go down the "ladder" of 
(26), progressively larger results are obtained and the function j^(1.35) di-
verges in this case even though /(1.35) converges, since x < elle. The value 
/ (2), which is the limiting value for N9 corresponds to the dashed part of the 
curve of x vs f(x) in Fig. 1 of [1], which we had labeled at that time as "not 
meaningful" for the function f(x). As can be seen from this figure, f^2^ (x) 
increases rapidly with decreasing x until it becomes infinite as X-+1. Typi-
cal values of f^1^ (x), as obtained from the equations 

(27) xf = f 
(28) l og x = log / / / , 
a r e as f o l l o w s : 

^(2) (1 .4 ) = 4 . 4 i s / ( 2 ) ( 1 . 3 ) = 7 . 8 6 , jT<2>(1.2) = 14 .77 , / ^ 2 ) ( 1 . 1 5 ) = 2 2 . 1 7 , 

/ < 2 ) ( 1 . 1 ) = 3 8 . 2 , f ( 2 ) ( 1 . 0 5 ) = 9 2 . 9 5 . 

Thus, for x = 1.19 we have 

(29) / (1.1) = / W (1.1) = 1.112, for N <_ 38.2, 

while J^(l.l) diverges for N > 38.2. 
It can be easily shown that for x < 1, we have fN(x) = f(x)9 regardless 

of the (positive) value of N9 and, correspondingly, the curve of x vs f(x) in 
Fig. 2 of [1] does not have a second branch similar to that of Fig. 1. 

We now define the function FN(x9 y) as follows: 
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(30) FN(x9 y) = x» 

We will examine this function first for the case that both x and y are larger 
than 1. We assume that x <_ y. The situation is then very similar to that for 
fN(x), As an illustration,, we consider the case where x = 1.3, and consider 
the plane Gi vs F, where G2 = F (45°  straight line) and G± = xyF = 1.3*'.- For 
y = 2/llm = 1.6525, we are at the border between the regions of dual conver-
gence and divergence in Fig. 1. Correspondingly, the curve of £, = 1.31,6S25F 

is just tangent to the line G2 = F at the point F = 2.304 (see Fig. 2). Now 
consider the curve G1 = 1.31-5f, which has two points of intersection F(1) and 
F<2> with the line G2 = F. We have: 

F(1) = 1.679, F(2> = 4.184. 

For F(1) < F < F(2), we find that 6^(1.3, 1.5) = 1.31,5? < F. Therefore, it can 
be concluded in the same manner as for fN(x) that j^(1.3, 1.5) converges to the 
value F(1.3, 1.5) for N <_ 4.184, while for N > 4.184, F (1.3, 1.5) diverges. 
Thus, for (x9 y) with y< y1±m, the roots of the equation 

(31) xyF- F = 0, 

de te rmine bo th t he v a l u e of F ( = F ( 1 ) ) and of ^max» such t h a t fo r N <_ Nmax , t he 
modif ied f u n c t i o n FN(x9y) converges to t h e v a l u e of F(x9y). Here Nmax = F ( 2 ) . 
Of c o u r s e , fo r y = y 1±m , we have F(1) = F^2> ( p o i n t of tangency) , and Nmayi = 
^ ( D = ^ ( 2 ) . As an example, fo r x = 1 .3 , y = 1.6525, t h e tangency occur s a t 
F = 2.304 in F i g . 4 , and we have convergence of F ( 1 . 3 , 1.6525) t o t h e v a l u e 
F = 2 . 3 0 4 , p rov ided t h a t N <_ 2 . 304 . 
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Fig. 4. The functions G1 = x? and G2 = f plotted vs f. The two curves of G1 
pertain to the x values x = 1.35 and x = e1/e = 1.444668. The curve of 
G1(1.35) intersects the 45° line G2 = f at the two points f(1) = 1.6318 and 
^(2) = 5.934, whose significance is explained in the text. The curve of 
G1(e1/e) is tangent to the G2 = f line at f = e (see [1]). 

When either x or y < 1 (or both x and y < 1), it is easily shown that the 
function FN(x9 y) = F(x9 y), regardless of the value of N. Thus, assume that 

6,(x) = xf 
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X < 1, but y > 1. Then, if N is arbitrarily large, yN will be still larger, 
i.e., yN = Nr where N' > N. The next step in the calculation of F(x9 y) in-
volves raising x to the power Nf. For Nf very large, we find xN' ~ 0, followed 
by y° = 1, and x1 - x. This proves that FN(x9 y) = F(x9 y) regardless of the 
value of N. Note that for N very small, we have yN ~1, followed by xyN^x1 = xs 
independently of N. 

The preceding argument involving FN can also be used to prove the follow-
ing theorem, when a similar function H of more than two variables is involved. 
Here we assume that M s a function of the type of F of Eqs. (2) and (3)... As 
an example, we define H(x9 y9 z) as follows: 

(32) H(x9 ys z) = x** 

where x9 y9 z are arbitrary positive quantities. It can be easily shown that 
if one of the three numbers x9 ys or z is <_ 1, then H(x9y9 z) will not diverge 
(although it may converge to two values for any given value of x9 2/, or z at 
the bottom of the ladder, by virtue of the property of dual convergence intro-
duced in [1] and [3]). To prove the theorem, we assume that x <L 1, but y and 
z > 1. At the top of the ladder, we obtain x^yZ\ where yz may be arbitrarily 

large. We will write yz = M. Now xM- 0 for x < 1 and large M. The next step 

calls for the calculation of zxM ~ z° = 1, followed by yz° = y9 and so on. It 
is easily seen that the sequence H(x9 y9 z) will never diverge provided that 
x9 y9 or z is. ̂  1. For the case where x9 y9 z are all larger than 1, but do 
not exceed e1/e

9 we may use the result of [1] to prove that 

H(x9 y9 z) £ f(e1/e) = e9 

and thus H(x9 y9 z) is convergent. On the other hand, if at least one of the 
triplet x9 y9 z is larger than e1te

9 say x > elle
9 whereas the other two lie in 

the range 1 < (y, z) < e1/e
9 then H(xs y9 z) will converge or diverge depending 

on the values of x9 y9 z relative to e1/e, in the same manner as for F(x9 y) 
(see Fig. 1). 
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