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1. INTRODUCTION 

The search for a local maximum of a function f(x) involves a sequence of 
function evaluations, i.e.s observations of the value of f(x) for a fixed value 
of x. A sequential search scheme allows us to evaluate the function at differ-
ent points, one after the other, using information from earlier evaluations to 
decide where to locate the next ones. At each stage, the smallest interval in 
which a maximum point of the function is known to lie is called the interval of 
uncertainty, 

Most of the theoretical search procedures terminate the search when either 
the interval of uncertainty is reduced to a specific size or two successive 
estimates of the maximum are closer than some predetermined value. However, an 
additional termination rule which surprisingly has not received much attention 
by theorists exists in most practical search codes, namely the number of func-
tion evaluations cannot exceed a predetermined number, which we denote by .N. 

A well-known procedure designed for a fixed number of function evaluations 
is the so-called Fibonacci search method. This method can be applied whenever 
the function is unimodal and the initial interval of undertainty is finite. In 
this paper, we propose a two-stage procedure which can be used whenever these 
requirements do not hold. In the first stage, the procedure tries to bracket 
the maximum point in a finite interval, and in the second it reduces this in-
terval using the Fibonacci search method or a variation of it developed by 
Witzgall. 

2. THE BRACKETING ALGORITHM 

A function / is unimodal on [a9b] if there exists a <_ x <. b such that f(x) 
is strictly increasing for a <_ x < ~x and strictly decreasing for x < x <_ b. It 
has been shown (Avriel and Wilde [2], Kiefer [6]) that the Fibonacci search 
method guarantees the smallest final interval of uncertainty among all methods 
requiring a fixed number of function evaluations. This method and its varia-
tions (Avriel and Wilde [3],Beamer and Wilde [4] , Kiefer [6], Oliver and Wilde 
[7], Witzgall [10]) use the following idea: 

Suppose y and z are two points in [a9b] such that y < z9 and f is unimodal, 
then 

f(y) < f(z) implies y ±~x_<_b9 
f(y) > f(%) implies a <_ x <_ z9 and 
f(y) = / 0 0 i m p l i e s y ± x ± z . 

Thus the property of unimodality makes it possible to obtain, after examin-
ing f(y) and f(z)9 a smaller new interval of uncertainty. When it cannot be 
said in advance that / is unimodel, a similar idea can be used. 

Suppose that f(x1)9 f(x2)9 and f(x3) are known such that 

(1) xx < x2 < x3 and f(x2) >̂ max{/(xx), /(x3)}, 
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then a local maximum of / exists somewhere between xx and xs. Evaluation of 
the function at a new point xk in the interval (x19 xs) will reduce the inter-
val of uncertainty and form a new set of three points x{9 x29 xs

f satisfying 
equation (1): 

Suppose x1 < x^ < x2 , then if f(xh) _> f(x2) let x{ = x19 x2 = x^9 x3 - x2» 
and if f(xk) < f(x2) let x[ - xh9 x2 = x2, and #3 = x3. Similarly for x2 < xh 
< x39 if f(x^) > f(x2) then let x[ = x29 x[ = xk9 x3 = x39 and if f(x^) < f(x2) 
tinen xeu x-\ — x-\ 9 x2

 == x29 x3
 = Xu • 

When applying quadratic approximation methods, the new point xk is chosen 
as the maximum point of a quadratic function which approximates /. The assump-
tion behind this method is that / is nearly quadratic, at least in the neigh-
borhood of its maximum. However, when the number of function evaluations is 
fixed in advance, this method may terminate with an interval of uncertainty 
which is long relative to the initial one. 

The quadratic approximation algorithm of Davies, Swann, and Campey [5] in-
cludes a subroutine that finds three equally spaced points satisfying equation 
(1). A more general method developed by Rosenbrock [8] can serve as a prepar-
atory step for a quadratic approximation algorithm (Avriel [1]). 

We now describe the search for points satisfying equation (1) in a general 
form that allows further development of our algorithm. The input data includes 
the function /, the number of evaluations N, and a set of positive numbers a^, 
i = 3, ..., N. 

Bnajck&ting AlgofLvtkm: 
Stzp 1. Evaluate f at two distinct points. Denote these points by x± and 

x2 so that fix-^) £ f{x2). S e t k = 3. 

Stup 2. Evaluate f at xk = xk_1 + ^•}i{xli,1 - xk_2) . 
If f(xk) j£ fixk-i.)i stop. (A local maximum exists between xk_2 and 
xk.) 
If f(xk) > f{xk_x)9 set k + k + 1. 

Stdp 3. If k = N + 1, stop. (The search failed to bracket a local maxi-
mum. ) 
If k <. N9 return to Step 2. 

If the algorithm terminates in Step 2, then the function was evaluated 
k <_ N times and a local maximum was bracketed between x^_2 and xk. The inter-
val of uncertainty may now be further reduced by evaluating the function at 
N - k new points xk + 19 ..., xN. Notice that there is already one point, xk_19 
in the interval of uncertainty, for which / is known. 

3. REDUCTION OF THE INTERVAL OF UNCERTAINTY 

In this section, we propose and analyze alternatives for selecting the in-
crement multipliers ak . Let F 0 = F± - 1 and Fn = Fn_2 + 4-i> n = 2, 3, ..., 
denote the Fibonacci numbers. If either 

FN _k 
(2) X]<_1 = Xk_2 + — " -(Xk ~ Xk_2) 

LN-k+1 
or 

•^N -k 
(3) xk_1 = xk - - ~(xk " xk-i^ 

then xk_x is one of the two first evaluations in a Fibonacci search with N - k 
+ 1 evaluations, on the interval bounded by xk_2 and xk., In this case, xk + l9 
..., xN can be chosen as the next points in this Fibonacci search. This choice 
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guarantees the smallest final interval of uncertainty among all other methods 
requiring N - k additional evaluations. 

If both (2) and (3) do not holds the next points can be chosen according to 
Witzgall's algorithm [10]. This algorithm guarantees the smallest final inter-
val of uncertainty in a fixed number of function evaluations when, for some 
reason, the first evaluation took place at some argument other than the two 
optimal ones. 

We now show how to choose the increment multipliers a^9 i = 3,...,/lf-l, 
so that equations (2) or (3), according to our preference, will hold when the 
bracketing algorithm terminates after k < N evaluations. 

Equation (2) implies that 

Fpj _ k 

xk-i " xk-z = "p [ (xk " xk-i^ + (xk-i " Xk-2^ 

o r 

FN-k + i xk ~ xk-i 
= + 1 = ou + 1. 

*N-k xk-i ~ xk-2 

Denote the value of a^ which satisfies the above equation by ajj,1 , then 

(4) <*<" - % * ^ - 1 = % ^ < 1 . 

Equation (2) holds for k < N if and only if ak = a^,1) . 
Similarly, equation (3) implies that 

FN-k 
(Xk ^ _ x ) + (xk-l Xk-2^ F N-k + l 

or 
FN-k+l _ Xk- l "" xk-2 _ J _ 

FN_k
 xk ~ xk-l ak 

(2 ) 
Denote the value of ak which satisfies this equation by a^ , then 

(5) a ( 2 ) = - ^ - = - ^ - > 1 
Olk ' rN-k-l 

Equation (3) holds for k < N if and only if ak = a [ 2 ) . 
Let dk = |tffc-tffc-i | * /c = 1, . .., N9 denote the search increments, then 

(6) d2 = \x2 - x± | and 
dk = akdk-i = ak ' ak-i a3|a?2 - a j , fc = 3, ..., fl. 

Denote the search increments by d[1) and d(
k
2) when a^1} and a[2) are chosen, 

respectively, for k = 2, ..., N - 1. Then equations (4) and (6) yield 

Q )
 FN-k-l FN-k FN->+ . | F N - k - l \ „ „ I 

dl1} = -= y — • • • * e *— • F2 - xi I = — \x2 - x± I, 
*N-k ^N-k + 1 *ff-3 rN-3 

k = 2, ...,/!/- 1. 

If the bracketing algorithm terminates after k < N evaluations, then the 
maximum is located in an interval of length 

I I ,(1) , M ) FN-k-l+FN-k> , FN-k + l. , 

K " ^ - 2 I = d\1} + d k ^ i = TT— \xz - a j = la?2 - a j . "fc k~1 FN-
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This interval is further searched by a Fibonacci search with N - k -f- 1 evalua-
tions (including the one in xk_±) which reduces its length by a factor (FN_k + 1 ) ~ 1 . 
Consequently, the length of the final interval is 

FN-3 

independent of k. This length is satisfactorily small in comparison with 

1*2 - XlI 
F 

N-Z 

which can be achieved by 717 — 2 evaluations if / is known to be unimodal with a 
maximum between xx and xz« 

Suppose, however, that the bracketing algorithm terminates after N evalua-
tions without bracketing a local maximum. The total size of the searched in-
terval is 

N-i \x2 - x± | F 

fc=2 • N-3 

I + 

In fact, when N is large, this sum approaches (1 + x) \x2 - x1| where x = 1.618 
satisfies x2 = 1 + x. The cost of obtaining a small final interval in case of 
success is in searching a relatively small interval and thus increasing the 
chances that the bracketing algorithm will fail. 

This default can be overcome by using ak
2>> rather than a^ . In this case, 

FN -3 FN-k + l FN-3 , 

W \X2 

FN-3 

~ Xl 1 ~ J? \X2 ~ Xl 1 
r N - k - l 

k = 2 , -...,'N - 1 . 

i(2) 
k FN-k-l FN-k 

The sequence dk increases with k so that a larger interval is scanned, 
and it is less likely that the bracketing algorithm will fail. In practice, 
some of the last increments dk* may be replaced by smaller increments, possi-
bly by d(

k
1) . 

4. SUMMARY 

We suggest a two-stage search procedure for maximizing functions by a fixed 
number of evaluations. The first stage is a quite standard bracketing subrou-
tine and the second is either the regular Fibonacci search or the modified 
method of Witzgall. During the first stage, the kth evaluation is at the point 
xk calculated from xk = %k_1 + aj<(xj<_-1 ~ xk-z^' We suggest three alternatives: 

A. Let ak = a^1? <_ 1. In case of success, proceed by Fibonacci search to 
obtain a small final interval. 

B. Let ak = a^2) > 1. In case of success, proceed by Fibonacci search. 

The chances for success are better than in case A, but the final inter-
val is longer. 

C. Let ak > 0 be arbitrary and proceed by WitzgallTs method. 

We note that different alternatives may be chosen for different values of k. 
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2,3 SEQUENCE AS BINARY MIXTURE 

DONALD J. MINTZ 
Exxon Research and Engineering Company, Linden, NJ 07036 

The integer sequence formed by multiplying integral powers of the numbers 
2 and 3 can be viewed as a binary sequence. The numbers 2 and 3 are the com-
ponent factors of this binary. This paper explores the combination of these 
components to form the properties of the integers in the binary. Properties 
considered are: value, ordinality (position in the sequence), and exponents of 
the factors of each integer in the binary sequence. 

Questions related to the properties of integer sequences with irregular 
nth differences are notoriously hard to answer [1]. The integers in the 2,3 
sequence produce irregular nth differences. These integers can be related to 
the graphs constructed in the study of 2,3 trees [2, 3]. It is shown in this 
paper that the ordinality property of the integers in the 2,3 sequence can be 
derived from the irrational number log 3/log 2. This number also finds appli-
cation in the derivation of a discontinuous spatial pattern found in the study 
of fractal dimension [4]. 

In Table 1, the first fifty-one numbers in the 2,3 sequence are listed ac-
cording to their ordinality with respect to value. Since the 2,3 sequence con-
sists of numbers which are integral multiples of the factors 2 and 3, it is 
convenient to plot the information in Table 1 in the form of a two-dimensional 
lattice, as shown in Figure 1. In this figure, the horizontal axis represents 
integral powers of 2 and the vertical axis represents integral powers of 3. 
The ordinality of each number is printed next to its corresponding lattice 
point. For example, the number 2592 = 2534 and 0rd(253Lf) = 50; therefore, at 
the coordinates 25, 34, the number "50" is printed. 


