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Korobov [1] developed procedures for integration over an N-dimensional
cube which are referred to in the literature [2, 3, 4] as number-theoretical
methods or the method of optimal coefficients. These methods involve summation
over a lattice of nodes defined by a single index instead of N nested summa-
tions. For the two-dimensional case, a particularly simple form involving the
Fibonacci numbers is obtained. Designating the Nth Fibonacci number by F,
k/Fy by a3, and {F,_,x;} by y,, where { } denotes the fractional part, the cu-
bature rule is
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The summation can also be taken as running from 0 to F; - 1, which replaces a

node 1,0 by 0,0 while leaving the rest unchanged. This cubature rule was
also given by Zaremba [5].

The investigators have been interested primarily in the higher-dimensional
cases and very little has been published on the two-dimensional case. An exam-
ination of the nodes for the two-dimensional case suggested an interesting con-
jecture about their symmetry properties and a modification which improves the
accuracy significantly.
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Conjecture: 1If x;, y, is a node for 1 <k < F, - 1 and if IV is (Odd ), then
ronjecatiie - even

<Zk’ ; - xk) is also a node.
k? Yk

Perhaps a reader can supply a proof.

One would expect the nodes of an efficient cubature rule to be symmetric
about the center of the square so as to give identical results for f(x, y),
fl, 1 -y), f(1 - %, ¥y), and f(1 -2, 1 - y). This suggests modifying (1) to

Fi
. £, 0 + £0, 1) + 3 Flays yp) + Flags 1= y)
_ k=1
/Ojff(m, y) dedy = 2@, 7 1) . (2)

Essentially, we have completed the square on the nodes. Some preliminary cal-
culations® indicated that this gain in accuracy more than compensated for doub-
ling the number of function evaluations.

The performance of the method is reasonably good, although it is not com-
petitive with a high-order-product Gauss rule using a comparable number of
nodes. It might be a useful alternative for use on programmable hand calcula-
tors which do not have the memory to store tables of weights and nodes and
where the use of only one loop in the algorithm is a significant advantage.

I also plan to investigate the effect of the symmetrization in higher-
dimensional calculations, but in such cases the number of nodes increases very
rapidly with the dimensionality.
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*1 am indebted to Mr. Robert Harper, a graduate student in the Department
of Chemical Engineering for programming the procedure on a T159.
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Begin with four nonnegative integers, for example, g, b, ¢, and d. Take
cyclic difference of pairs of integers (the smaller integer from the larger),
where the fourth difference is always the difference between the last integer



