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Results similar to those obtained for pz(x) may be obtained for qﬁ(m). At this
stage, it is not certain just how useful a study of qz(x) and ri(x) might be.
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ENUMERATION OF PERMUTATIONS BY SEQUENCES—II

L. CARLITZ
Duke University, Durham, NC 27706

1. André [1] discussed the enumeration of permutations by number of sequences;
his results are reproduced in Netto's book [5, pp. 105-12]. Let P(n, s) denote
the number of permutations of Z, = {1, 2, ..., n} with & ascending or descending
sequences. It is convenient to put

(1.1) P(0, s) = P(1, 8) = &, ,.
André proved that P(n, 8) satisfies
(1.2) P(n+ 1, 8) = sP(n, 8) + 2P(n, s - 1) + n - s + 1)P(n, s - 2),

(n>1).
The following generating function for P(n, s) was obtained in [2]:
S 1 - 2(/1 - 2% + sin z)z

n
_ 2y-n/2 3" n-2 =
(1.3) 20 - x?) n!;g%P(” +1, s)x l1+x\ - cos z

s=0

However, an explicit formula for P(n, s) was not found.
In the present note, we shall show how an explicit formula for P(n, s) can be
obtained. We show first that the polynomial

n

(1.4) p, () =2 Pn+ 1, 2)(-a)"*
satisfies =0

n
(1.5) Pan () ='E%TT(1 - x)n_l{z 2:('1)n+kA2n+1,k1%-k+1(x) - A2n+1,n+1}
k=1
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and

1 Lo B}
(1.6) Pona @ = amgl = @ DI Uy # Ay )T )

where the 4, ; are the Eulerian numbers [3], [7, p. 240] defined by
(1.7) ii E;. 55 An,kxk=‘“—“l_:“£“'_'
n=0 """ k=0 1 - ze®(7®)
and T,(x) is the Chebychev polynomial of the first kind defined by [6, p. 301]
(1.8) T,(x) = cos ndp, x = cos ¢.

Making use of (1.5) and (1.6), explicit formulas for P(n, 8) are obtained. For
the final results, see (3.7), (3.8), and (4.2), (4.3).

2. In (l1.3) take x = -cos ¢, so that

o . . 2
(2.1) E (sin q))_nz EP(” + 1, 8)(-cos ¢)n s _ 1 + cos d>/51n ¢ + sin z) .
=0

Ke 1 - cos ¢p\cos ¢ + cos z
We have

(sin ¢ + sin z)2 = tan? _(z + ) = L= cos(z + ¢)

cos ¢ + cos z 1 + cos(z + ¢)°

Hence, if we put

. . 2 il n
(2.2) <s1n + sin z) - 2: f;(cos ¢)§T’

cos ¢ + cos 2z =

it is clear that

d"” 1 - cos
(2.3) fn (cos ¢) = 'Cg';' I+ cos ¢°

To evaluate this derivative, write

_l—cosd):eq’i—lz:l_ 4 + 4
1 + cos ¢ e+ 1 ed + 1 (et + 1)2
Then
1dl-cos¢__ de®™ _26e* i 37 + 27
blap LTS O (et L )2 (¥4 )P et 4l (¥ 4+ 1P (e¥ + D)3
and
1 d® l-cos ¢ _ _ % 74* Lo 12d? 672
dq)z 1+ cos q) e¢i + 1 (e¢7,' + 1)2 (ed)z + 1)3 (e¢i + 1)'-0

The general formula is

n1d"? 1 -cos ¢ _ in-2 k-1(k - 1)15(n, k)
@8 D T T cos 8 T Zf D eIt

where S(n, k) is the Stirling number of the second kind [7, Ch. 2]:

Y 5, BEL = gr(e® - D,
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The proof of (2.4) by induction is simple. The derivative of the right-hand
side is equal to

in-1 E( 1y* k! 5(n, ket - grl 2( -1 {k S(n, k) _ k! S(n, k) ]

k=1 (e?? + 1)k*1 = (ebi + 1)k (edt + 1)k
n+l
R Ne 1)"—-5—"——-1—2——{<k3(n, ) +S(n, k- DY
k=1 (ef? + 1)F

Since kS(n, k) + S(n, k-1) = S(n+1, k), this evidently completes the induction.

We may rewrite (2.4) in the following form:

_1_ dn—2 1l-cos q) _ (—l)n’l‘-n-z z _ k-1 ['YA n-k
(2.5) 7 o ? TTeos§ = ey g;l( DR Lk-1)150m, DE®+1D)"%, &> 2).

In the next place, we require the identity

n n-1
(2.6) kEI<—1>’<-1<k - DS, K@+ D" = kZ (D", gwk, (2 1),
- =0
where 4, _, ;, is the Eulerian number defined by (1.7).
To prove (2.6), take

©

Z 2( DXk - 1)15m, k) (x + )"k

Z( Dk - D + )Y S, k)i—(ﬁi—lK

n=k
=§,_:<1

a(x+1) 2(x+1)
e -1 x+ e
log<1+ =7 1 )—log = 51 .

)kt -k
S——(x + 1) (e - 1)E

Differentiating with respect to z, we get

a(x+1)
YA (n E( DRIk - D15, k) (@ + Dk = EEL)e - ltc

ne=w x + e?@*D 1 + ge-2@+®

On the other hand, by (1.7),

P f}(~1)"An,kxk= Lt

n=0 k=0 1 + ze ?0+®
Hence,

n n-1
Y DE KR - DSk, R (@ + DR = 3D, ok
k=1 ' k=0

3. By (2.5) and (2.6) we have, on replacing n by n + 2,

1l d 1 -~cost¢ 0" oy n-k+1 k¢
4d¢ 1+cos¢_(e¢1+1) Z(l) A ke s
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since An+1m = 0. Moreover, since [3]
3.1 Aprr,x = Ansin-k+2 1<k<n+ 1),
we have

n _ n+l (n-k+2)¢7 _1yn ke
de™ k=1 (e +1)"*2

t(n-2k+2)4

+ (_l)ne_é(n—ziwz)cpi

(et + o-3oi)n*2

1 n+1l )
- NG +1
= 5(=2) ’?:1<—1) Aprrr

Therefore, in view of (2.3), we get

Ln-2k+2)¢z -l(n-2k+2)¢3

. nn+1 e + (_1)?16
(3.2) f,(cos ¢) = 2(-0)" Y (-1)**14 o 7
= ’ (2 cos-§¢)

n+2

It is convenient to consider »n even and »n odd separately, so that

2n+1
(3.3) Fancos 0) = == 3 (-pyrrriry, o cosln kA 1O
22" = 1 (os 20)

and 2

1 2n . sin %(Zn -2k + )¢
(3.4) Fan_1(cos ¢) = zzn—lg;l("l) Ay = T

By (1.3), (1.4), and (2.2),

3.5 p, (cos ) = %—%}%%2—% sin"¢ f, (cos ¢)
3.5

2" cos”+2-%¢ sin"'z-%¢ f,(cos ¢).
In particular

p,,(cos ¢) = 227 cosZ"+2-%¢ sinzn‘z-%¢ f,,(cos ¢),
so that, by (3;3),
n+1

(1 - cos ¢)n—1 . (__1)n+k+1A
k=1

1
2n—1

Using (3.1) and (.18), (3.6) gives

(3.6) p,,(cos 9) = cos(n - k + 1)o.

2n+1, k

l _ n
(3.7) p,, &) = 2n—1(1 - x)" 1{22:(—1)”+k+1A2n+1,k1;_k+1(x) + A2n+Ln+1}'
k=1

This proves (1.5).
Next, replacing » by 2n - 1 in (3.5), we get

P,,.,(cos ¢) = 22”‘1coszn+1-%¢ sinzn"3-%¢ fan-,(cos ¢)

1]

2n
sinZ”‘3-%¢ 2: 04)n+kA2n,ksin %(ZH -2k + 1)¢
k=1

(continued)
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2n
-;— sin2"" " %cbZ(—]L)”J'kAM o lcos(n = k)p - cos(n - k + 1)¢}
k=1 ’

1 L &
= a1 - cos 9)F 23 1" Uy, , + Ay, peq)cos(n - KO
k=1
1 n-2 n‘,-l n+k
= E;j;(l - cos ¢) ) (-1) Ay, 0 T A5, xe1)cos(n - )G + Agpint -
k=0

Finally, therefore, by (1.8),

1 I =
(3'8) pZVL-l(x) = 2n-2(1 - CC) Z{kz% (—1) +k(A2n,k + AZn,k+1)Tn—k(x) + AZn,n}'

4. We recall that

wn nweg (50 (e

0<25<n

2n-lgn +% , (-1)=7'ﬁ.(” -
; 7

2T e, iz,

In

<2j<mn

Thus (3.7) becomes

n-1 n
@ = g0 (1L e {0 P, T end
t=0 k=1

2§ <n-k+1

n-k-g+1 -k-J n-k-23
.[< jJ )+<nj— IJ)](ZJC) fraie +A2n+l,n+l}

1 N2n-s % -k -+
R MU V) (PR

s=n+k+2j-t-1

n - k - J n - 1‘ n-k-24+1 1 2 n-1 o2n-8
+( J -1 )} t }2 Lt 2n—1A2n+1,n+l Z (Zn - (=) :

Comparison with (1.4) gives

1 j -k-4+1
(4.2) P(2n + 1, 8) = zﬂ-l;z,-'l‘q“”»k ) (-DJ{(H - J )

s=n+k+2j-t-1 J

n-k =9\l = Non-x-25+1 1 (n -1
+( Jg -1 )} t )2 +2n—1 29 - A2n+l,n+l'

Similarly, it follows from (3.8) that

n -

1

n

> Y

s=n+k+2j-t-1

FEENE

1 n -2
+ 271—2(2” - g -1 ‘42?’!,71'

(4.3)  P(2n, 8) =

2n, k+1

1
— (4,,, T4
k=0
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5. For numerical checks of the above results, it is probably easier to use (3.7)
and (3.8) rather than the explicit formulas (4.2) and (4.3).
It is convenient to recall the following tables for P(n, s) and A, »s respec—

tively:
TABLE 1
I 0 1 2 3 4 5 6
1 1
2 2
3 2 4
4 2 12 10
5 2 28 58 32
6 2 60 236 300 122
7 2 124 836 1852 1682 544
TABLE 2
" k 1 2 3 4 5 6 7
1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120 1
We first take (3.7) with n = 2. Then

p,(x) =

F( - @) {2, T, @) - 2, T, @) +4g,)

%(1 - 2){2(22% - 1) + 52¢ + 66}

223 - 28x2 + 58z - 32.
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Taking » = 3 in (3.7), we get

Next, taking n

1
p () = 7(1 - x)z{-2A7J_T3(x) +24,,T,(x) - 24, , T (2) + Azu}

[Dec.

=-%(1 - @) 2{-2(4x® - 3m) + 2 + 120(22% - 1) - 2 - 1191z + 2416}

= (1 - 2)2(544 - 1188x + 120x2 - 2x°%)
= 544 - 1682x + 1852x% - 836x° + 124x" - 2x5.

2 in (3.8), we get

1
x
];) -1 (Au,vk A )T, @)+ Au,z

=4, T,@ - @4, +4,,)@ +4,,
(2x? ~ 1) ~ 12 + 11
222 - 12¢ + 10.

P, ()

Similarly, taking » = 3 in (3.8), we get

Th(

and

res

.

Mor

By

2
1 ,
pslx) = 7(1 - %) { E ('l)“k“As,k +Ag )Ty (@) + Ae,a}
k=0

1 .
=51 - ) {-Ag 1 T3(x) + (Ag,1 + A2 )T (x) = (Agp + Ag,3 )Ty () + Ag,3}
= %(1 - x){~(42® - 3x) + 58(2x% -~ 1) - 359 + 302}
= 2% - 602® + 236> - 300z + 122.

Another partial check is furnished by taking x = -1 in (3.7) and (3.8).

Since

-1) = cos nm = (-1)", it is easily verified that (3.7) and (3.8) reduce to
n m+1
Py, (-1) = 27;(A2n+1,k tArni1, ne1) = kz_:l Apper, = (2n+ DI
n-1 ) 2n
Pon1(71) = k2=:0 o T A2 141 4000 = ;Azn,k = (m)!,
pectively.

On the other hand, for & = 1, it is evident from (3.7) and (3.8) that
1) p (1) =0 (n>4).

eover, since 7, (1) =1, it follows from (3.7) and (3.1) that

(n+1 -1(n =~ 1) . k
pz-: ’ 1 = (_1)” ' 2”—1 {2 Z(—l)n+ +1A2n+1, k + A2n+l, n+l
k=1

n+1
(n - 1)1 g
pn-1 27.41 (-1) Apnsr, ke

(1.7), we have
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0 n o
i D, = — =Y ¢ 2
' +nz=:1n! 7;1( D 4k ezz 2 G, "nl

n=0

in the notation of Norlund [5, p. 27]. Hence

- !
(.2) p;: P = £25§7%1;65n+1'

For example
pg(l) = 3704 - 5016 + 1488 - 40 = 136;

since C, = 272, this is in agreement with (5.2).
As for pZn_l(m), it follows from (3.8) that

- - 1 =
PO = il {Z< R N

= o 2 [ E( ISk lA i T z (_1)kA2n—k+1 + (—1)",42","}
k=1

2712
_(n - 2)' & k-1
2 Z( 1) A2n Kk’
so that

(5.3) (1) =0 (n > 2).

Next, we have

2n1
By (1-8),
T)(x) = n sin ng (x = cos ¢),

sin ¢

which gives T,)(1) = n?. Thus

2n 1 2n, k

After some manipulation, we get

8 -1
(5.4) P00 (1) = i”—z——-)-— 2( D120 = 2k + DAy
2n
- ;—i)! 2 ('l)kkAzmk'
2 k=1

Making use of (1.7), it can be proved that
(5.5) (1 - 24l =4 (@) - (n+ Dxd,(x),

where

n+l

L@ =) Ay ak (n>1).
k=1

Hence

243,(-1) = Appi1(-1) + (2n + DAz, (-1) = Cony1s

where (,,., has the same meaning as above. Thus (5.4) reduces to

(1) = (-1)*" 2%‘—1)—3{ ):( n**a@,, +A2n,k+1>}T,{-k(1>-

(H _ l)' n-1 '
PR = IR B DR - K2y, Ay, )
k=0

405
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(n-1) _(n = 1)!
(5.6) p2n_1(l) _'_—EZTT__02n+1'

For example,

py(l) = 24 - 360 + 472 = 136,

in agreement with (5.6).

(Please turn to page 465.)
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"o T wish . . . o point out that the use of the golden section . . .
has apparently bwwst out into a sudden and devastating disease which has
shown no signs of stopping . . " [2, p. 521]

Most of the papers involving claims concerning the '"golden number" deal with
distinct items such as paintings, basing their assertions on measurements of these
individual objects. As an example, we may cite the article by Hedian [13]. How-
ever measurements, no matter how accurate, cannot be used to reconstruct the ori-
ginal system of proportions used to design an object, for many systems may give
rise to approximately the same set of numbers; see [6, 7] for an example of this.
The only valid way of determining the system of proportions used by an artist is
by means of documentation. A detailed investigation of three cases [8, 9,10, 11]
for which it had been claimed in the literature that the artist in question had
used the "golden number" showed that these assertions were without any foundation
whatsoever.

There is, however, another class of papers that seeks to convince the reader
via statistical data applied to a whole class of related objects. The earliest
examples of these are Zeising's morphological works, e.g., [17]. More recently
we have Duckworth's book [5] on Vergil's Aeneid and a series of papers by Benja-
field and his coauthors involving such things as interpersonal relationships (see
e.g. [1], which gives a partial listing of some of these papers).

Mathematically we may approach the question in the following way. Suppose we
have a certain length which is split into two parts, the larger being M and the
smaller m. If the length is divided according to the golden section, then it does
not matter which of the quantities, m/M or M/(M + m), we use, for they are equal.
But now suppose we have a collection of lengths and we are trying to determine
statistically if the data are consistent with a partition according to the golden



