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\E2\ = - A _ _ = _ ± : < ,26/|s|n+1 < .2, 

\s - r\\s - J\\s\n+1 2\s - r\\lm s\\s\n+1 

which along with (8) and (6) implies 
Tn + i?1 = -Rz - i?3S 

so 
\Tn +R1\ = \R2 +R3\ <2\R2\ < . 4 ; 

hence 
Tn - .4 < - ^ < Tn + .4 

o r , e q u i v a l e n t l y 9 
Tn < -R1 + A < Tn + 1. 

Substituting the value of R1 from (4) into (9) we may rewrite (9) in terms of the 
greatest integer function and obtain the desired formula: 

J — — + . 4 
\r - s\2rn+1 
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1. INTRODUCTION 

Chebyshev polynomials Tn(x) of the first kind and Un(x) of the second kind are, 
respectively, defined as follows: 

Tn{x) = cos (n c o s " 1 ^ ) (\x\ £ 1 ) , 

Un(x) . B l n K n + D c o s - ^ r ( | x U l ) . 
s i n ( c o s ~1x) 

In 1974 Jaiswal [6] investigated polynomials pn(x) related to Un(x). In 1977 
Horadam [5] obtained similar results for polynomials qn(x) , associated with Tn (x) . 
The polynomials pn(x) and qn(x) axe. defined as follows: 

(x) = 2xpn_1(x) - pn_3(x) in j> 3) with 
(1) 

.p0(tf) = 0, p1(x) = 1, p2(x) = 2x 
and 

rq (,x) = 2xqn ±(x) - qn_3(x) (n >. 3) with 
(2) 

qQ(%) - 0, q (x) = 2, q2(x) 2x. 
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Chebyshev!s polynomials of both kinds are special cases of Gegenbauer polynomials 
([1], [2], [3], [8], [9]) Cl(x) (X > -h, \x\ £ 1) defined by 

Cl(x) = 1, Cjfe) = 2Xx9 

with the recurrence relation 

nClix) = 2(X + n - l)xC^_1(x) - (2X + n - 2)C*_2(x)9 n > 2. 

Polynomials C„(x) are related to Tn(x) and Un(x) by the relations 

a n d *»<*> = 2 ^ — ^ ^ 

Un(x) = Cl(x). 

In Jaiswal [6] and Horadam [5], it was established that x = 1 in (1) and (2) 
yields simple relationships with the Fibonacci numbers Fn defined by 

FQ = 0, i^ = 1, and Fn = F n_1 + Fn_2 (n >_ 2) , 
namely, 

Pn(D = Fn + 2 - 1 
(3) 

qn(l) = 2Fn. 
These results prompt the thought that some generalized Fibonacci connection might 
exist for C„(x). 

In the following sections, we define the polynomials p£(x) related to C„(x), 
determine their generating function, investigate a few properties, and exhibit the 
connection between these polynomials and Fibonacci numbers. 

2. THE POLYNOMIALS px{x) 

Letting 

(X)0 = 1 and (X)n = X(X + 1) ... (X + n - 1), n = 1, 2, ..., 

we find that the first few Gegenbauer polynomials are 

(X )2 
(4) CX

Q(x) = 1, Cfe) = 2Xx9 C\(x) = -j^-ilx)2 - X. 

Listing the polynomials of (4) horizontally and taking sums along the rising 
diagonals, we get the resulting polynomials denoted by px(x). The first few poly-
nomials px(x) are given by 

(A)2 (X)3 

(5) P i W = 1, p\(x) = 2Xx9 p](x) =-JT-(2X)2, p\(x) = -^-(2*) 3 - X. 

We define px(x) = 0. 

3. GENERATING FUNCTION 

ThdQtim 1: The generating function Gx(x9 t) of px(x) i s given by 

°X(X> V = ] £ pX(x)tn~l = (1 - 2xt + t 3 ) ' A . 
n = l 

VKOOJ: Putting 2a: = zy in (4) we obtain the following figure. 
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FIGURE 1 

It is clear from Figure 1 that the generating function for the feth column is 

(-Dk(X) 
r - ^ i - *J/)"(A+fc)-

Since pA(x) are obtained by summing along the rising diagonals of Figure 1, the 
row-adjusted generating function for the kth column becomes 

My) = -
Since 

k\ 

(-l)k(̂ )„ / +3 

(1 - tyy<-x + kh 3k 

the generating function of pxGc) is given by 

(6) Gx{x, *) - £ pHx)^-1 = (1 - 2fcc + t3)" L 3 \ - A 

Expanding the right-hand side of (6), we obtain 

(7) 
[ » / 3 ] ( - l ) * ( X ) „ _ 2 k 

P«\iW = E ( M - 2fc)l ( fc ) ( 2 a : ) 
t-3fc 

fe = 0 
Observe from (1), (5), (6), and (7) that pHx) = p (ff), n = 0, 1, 
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4. RECURRENCE RELATION 

TheXJtiem 2: The recurrence r e l a t i on i s given by 

(8) px(x) = (2x)(A + n - 2)_> ,_x 3A + « - 4 
x / r n v / ft - 1 n-1 P* , <*> „•_ l P»-a.<*>» . ( » i 3 ) . 

Vnooji From (7), the &th term on the right-hand side of (8) is 

( x)k(A +n - 2) (X>»-2-2^ 

(-1) 

n - 1 (n 

fc-i(3X + n - 4) 

2 - 2k) 

(A) 

r(*-2
fe-2*)(2a:r- 3&-1 

n-"t-2(S;-

n - 1 (n 

After simplification, this becomes 

2(fc - D ) 
i) /n - 4 - 2 ( f e - 1) 

k - 1 )(2*)"" 3k- 1 

(-Dk(X) n-l-2fc (2a?) 
n-3fc- 1 

fc!(w --1 - 3ft)! 

which is the ftth term on the left-hand side of (8). 

Ordinary Fibonacci numbers Fn are expressible in two equivalent forms: 

(a) 
(9) 

Fn - F
n-1 + Fn-2 

F = IF n-1 <B). 

Observe that expression (8) in Theorem 2 is of the form (3) in p x ( x ) . An attempt 
to obtain the recurrence relation in the corresponding form (a), namely, 

p*(x) = Ap^^(x) "+ Bp^_2(x)9 

where A and B axe. functions of A, leads to an intractable cubic. Perhaps the form 
(8) that follows the patterns of the forms for p (x) and q (x) is the best avail-
able. 

The following recurrence relation involving the derivatives of p x ( x ) is easily 
proved. 

ThdOKom 3: 
(10) 2x(p^+2(x))f - 3(p*(a»)' = 2(n + l)p*+2(x). 
Equation (10) corresponds to the similar results satisfied by p (x) and q n ( x ) . 

5. THE POLYNOMIALS S n ( x ) 

Define 

(11) 

^o^) = °> Site) = 3» a n d 

S„(x) = 5n(x) = (n - 1) lim 
X + 0 

rn-ii 

p»(tf) 

TZLzJ:] 
- V ( - P * ( n - , l ) / n - 2ft - 1\ n-i-3k 
~ JL n - 2k - 1 \ ft ly 

k - 0 

(z/ = 2 # ) , n >_ 2 . 



1981] POLYNOMIALS ASSOCIATED WITH GEGENBAUER POLYNOMIALS 397 

From (5) and (11) we obtain 

\s2(x) = 2x9 Ss(x) = (2x)2> Sk(x) = (2x)3 - 3, 
(12) | 

[S5(x) = (2x)h - Mix), S6(x) - (2a?)5 - 5(2x)2 

Using (7) and (11) and following the argument of Theorem 2, we have 

TkzpKQm 4: Sn(x) = 2xSn_1(x) - Sn_3(x) (n >. 3). 

We readily observe the similarity of the form for Sn (x) in Theorem 4 with the 
forms for pn(x) and qn(x) in (1) and (2). •' 

Letting A = 1 in (7), using (11), and comparing kth terms, we have 

ThzoKom St Sn(x) = pn(x) - 2pn_3(x) (n >_ 3). 

ThdQKQm 6: Sn(x) = 2qn(x) ~ pn (x) (n >. 0) . 
VKOOJi From Horadam [5, Eq. 6], 

pn<*0 = qnte) +"p n . 3 ( a ) ' ( i ) 
Therefore, 

Sn(x) = pn(#) - 2{pn{x) - ̂ n(a?)) from Theorem 5 and (i) 
= 2qn(x) - pn(a?)," 

which proves the Theorem. 

Letting x = 1, we have by (3) 
Sn(l) = 2^(1) - pn(l) - 2Fn - F„.x + 1. 

Using the known generating functions for pn(x) and qn(x) given in [6] and [5], re-
spectively, we can readily deduce the generating function for Sn(x) from Theorem 
6. 

Theorem 2 is valid for all x. Hence Theorem 4 also follows from Theorem 2 on 
dividing throughout by A and letting A •*• 0. 

6. THE POLYNOMIALS q*[x) 

Instead of examining px(x) as obtained in (7), suppose one investigates the 
rising diagonal functions q*(x) of 

Q Gc) 
(13) n lim —^ (n >. 1). 

X-»-0 A 

An explicit formulation of qx(x) is 

where 

(15) (X);.2k - X(X)B.2k. 
Writing 

(16) r£(x) - p*+1Gc) - <7*GG) 
and using (7) and (14), we obtain 

(ir> ' rHx) =y 1 ( - 1 ) f e ( r l ~n + k)(X)' y " - 3 k 
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Results similar to those obtained for p„(x) may be obtained for q*(x). At this 
stage, it is not certain just how useful a study of q^(x) and r„(x) might be. 
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ENUMERATION OF PERMUTATIONS BY SEQUENCES—II 
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1. Andre [1] discussed the enumeration of permutations by number of sequences; 
his results are reproduced in Netto's book [5, pp. 105-12]. Let P(n9 s) denote 
the number of permutations of Zn = {1, 2, ..., n} with s ascending or descending 
sequences. It is convenient to put 

(1.1) P(0, s) = P(l, s) = 60>s. 

Andre proved that P(n9 s) satisfies 

(1.2) P(n + 1, s) = sP(n9 s) + 2P(n, s - 1) + (n - s + l)P(n, s - 2), 

(n >. 1). 

The following generating function for P(n9 s) was obtained in [2]: 

(1.3) £ ( 1 - x*y»'**lTp(n + l , 8)xn- = l ^ J g / / l - * 2 +_sinJL\2
> 

*-** n!^r t 1 + x\ x - cos z J 

However, an explicit formula for P(n, s) was not found. 
In the present note, we shall show how an explicit formula for P(n9 s) can be 

obtained. We show first that the polynomial 

(1.4) p (x) = £ Pin + 1, x)(-x)n-s 

satisfies 

(1.5) p2B(ar) = -£_(1 - x)n-i\2 j^(-l)n+kA2n + lykTn.k+1(x) - 42„+1,„+1 
1 I k-i 


