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PKqo£t Let (ltbi<.ri) denote the number of bt that are <. n. Using the formula 
CF(n) = n + p(ri) on p. 457 of Lambek and Moser [6], we find 

n + 0bi £ n) = nth positive integer not 
in the sequence {bn + n - 1}, 

so that 
(#2?i £ an) = -an + anth term of the complement of {bn + n - 1}, 

whence the nth term of {an} ® {bn}9 which is clearly an - (#&£ £ a n ) , must equal 
Since {cn} is almost arithmetic with slope y + 1, {<?*} is almost arith-

metic with slope 1+1/t?, by Theorem 6. Then {otn} is almost arithmetic with slope 
u(l+l/t>)9 by Theorem 5. Thus, {2an - o% } is almost arithmetic with slope 2u -
u(l + 1/v). 

Tk&QSiQm 9; Suppose {an} and {bn} are almost arithmetic sequences having slopes u 
and v, respectively. Then 

{a„} 0 {*>»} = {&*,} 
is an almost arithmetic sequence with slope uv/(v- 1). 

Vh.QO{< By definition, the nth term of {an} © {bn} is the anth positive inte-
ger not one of the bit as claimed. As a composite of a complement, this is an 
almost arithmetic sequence with slope uv/(v - 1), much as in the proof of Theorem 
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SUMS OF THE INVERSES OF BINOMIAL COEFFICIENTS 

ANDREW M. ROCKETT 
C. W. Post Center of Long Island University, Greenvalef NY 11548 

In this note, we discuss several sums of inverses of binomial coefficients. 
We evaluate these sums by application of a fundamental recurrence relation in much 
the same manner as sums of binomial coefficients may be treated. As an applica-
tion, certain iterated integrals of the logarithm are evaluated. 
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Let n >_ k be positive integers. One of the basic recurrence relations of bi-
nomial coefficients 

. ^ . x - , v* k)lk\ 
i s t h a t \ / v 

\k) ~ (n - k] 

( Z ) - ( " ; ' ) • G : i) 
coe For the inverse of the binomial coefficient, 

-1 _ (n - k)\k\ 

we observe that 

U) = m—:—(*-.<n-fe» 
= ((n ,- l)-(fe - l))!(fe - 1 ) ! . _ ((n- (fe - l))(n-fe)!(fe - D ! . ( n - k ) 

n\ n\ ( n - (/c- 1)) 
and so 
r*>> /M"1 = /n - M " 1 (n - fr) / n \~x 

K } \kl U - 1/ (n - fc + 1) U - 1/ ' 
This relation is studied from a different viewpoint in [5, Ch. 1, Prob. 5]. For a 
similar sum formula not to be discussed here, see [4, n. 21], 

Using mathematical induction on n and the identity (*), we find 

In + m\ 1
 1 _ n \^ (n + M~ 

\ m I n + l£4\k - I) 

for any two positive integers n and m (for the corresponding relation for binomial 
coefficients, see [2, p. 200]). 

n \ -1 
ThojOKOM 7: Let Jn = ̂  ( - 1 . Then Jn satisfies the recursion relation 

j = n + 1 
in 2n "-1 

and 

" " 2 « + 1 .=i fe ' 

This corrects a slight error in [3], 

VhJ00{ by Induction on n» For n = 1, we have Jx = 2 from the definition and 
from the formula. We now show that the formula for n + 1 follows from the formula 
for n and the relation (*). 

i.~-'±evr-rvr*t(*v)~l-
n + 1 / i i \ - l / . 1 \ - l n + 1 

f(nV • " J 1 + £ 
k = 0 fe = 1 

Applying (*) to each term of the sum, we have 
n + 1 

I = 1 +
n y / / n y1 __ ( n + 1) - k / n + l)'1) 

n+i ^ L, \\k - l! (n + 1 - k) + 1 \k - 1/ / 

= i + j -V - n " fe ln + M"1 

z-r (n + i ) _ ^v fe ; • 
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Since 
n - k = 1 1 

(n + 1) - k (n + 1) - k3 

we may rewrite our last expression as two sums: 

1
n+i i + i « L*\ u J ^ ^ (n + I) - k\ k ) 

so that 

fc = 0 A:=0 

2 + In Jn+1 + n + ]_Jn 

±n+l 2(W + 1) * 

and the recursion relation is established. Applying the induction hypothesis for 
In yields 

I = n + 2 /w + l y * 1 2^ \ + n + 2 2 n + 2
 = (n + 1) + 1 ( n + i ^ + 1 ^L = n + 2 In + l y * 1 2^ \ n + 2 2 n + : 

«+i 2(n + l ) l 2
n + 1 ^ i ^ / 2 n + 2 n + 

a s r e q u i r e d . 

Tfieo/LC^ 2: For * .> 2 , £ (W £ k ) 
-l 

fc / n - 1 
fc = 0 

P̂ iOÔ  bt/ Induction: For n = 2, the sum is 

and the terms pairwise cancel. For n > 2, we observe that 

V^ In + k \ _ 1 /n + O r 1 _,_ v (n + / c \ " 1 i , V (^ + (^ + D V 1 

g 0 l fc ) - V o ) \ % l k ) = l + h [ -fc + i- ' ' 
Applying (*) to each term of the sums we have 

E("tr--£(("tr-^rr<ri>)"1)-
Assuming Y] y , ) = _ and hence is finite, we obtain 

n ^ Kn + 1) + k)'1 _ 1 

fe = o 

n • * * - o 

completing our proof. 

Tfieo/iem 3: F o r n > l , l e t Jn = £ ( - l ) k ( n £ ) . Then Jn s a t i s f i e s t h e r e c u r -
s ion r e l a t i o n k=° 

and 

^n+l =Hr^n ~ 1) 

J„-f(2-ln(2)-jJ ^ ) -
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Vtwoj by Induction: For n = 1, we have J1 = ln(2). For n > 1, we follow the 
method of proof of Theorem 1. 

A -HtHftv!;")" 

«:-0 fe-0 

- 1 -J» +irtTJ»+i 

and the recursion relation follows. Thus 

J 

As an application of these last two results, we use them and a theorem of Abel 
(see [1]) to evaluate an iterated integral of the logarithmic function. 

Let f0(x) = (1 - x)'1 and, for n > 09 let 

Jo 
Recall that integration by parts gives the formula 

/ 
xn+1 xn + 1 

xn In Or) dx = —~—r-ln(x) for n >_ 0. 
M + 1 (n+l)2 

Since f±(x) = -ln(l - x) , we see that 

-f 
Jo 

f2(x) = / - ln(l - t)dt = (1 - x) ln(l - x) - (1 - a:) + 1 
'o 

and by induction on n we find 

(n - 1)! fn W = J"-1)nt(1 " x)n_1 ln(1 " *> + ̂(n) * (1 " a:)n"1 + £ B<n> ^ " xk 
k = 0 

for n _> 2 and # in the open interval (-1, 1). Here A(n) is given by ̂ 4(1) = 0 and 
for n >. 2, 

4(w) = -:^-r^(n - 1) + , ̂ " v , ) n - l\ (n - 1)!/ 

and #(n, ft) is given by B(n, 0) = -A(n) for n > 1, while for n > 2 and ft J> 1 , 

B(ns ft) = |-B(n - 1, ft - 1). 
Notice that repeated application of this last relation gives 

B(n, ft) = ih~B(n - ft, 0) for ft <. n - 2, 
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and so 

Since 
" 1 -V- (-I)*-1' 

we see that each #(n9 0) may be regarded as a binomial sum. 
On the other hand, 

fQ(x) - (1 - x)-1 - £** 
fc = 0 

and term by term integration of this power series gives 

fn Or) = x n ^ (fe + i) . ... . (fe +-n) " 

For n 2 2, this series converges at a; = ±1 and is uniformly convergent on the 
closed interval [-1, 1]* By Abel's theorem for power series, the values of our 
functions at the endpoints of the interval of convergence are given by the power 
series 

-, • + t \ _ V 1 „ X V tn + k\'1 = -L n 

±im xnKX) iL (fc + l) ..... (fc + n) ~ n! ̂ o \ k I n\* n - V 

by out Theorem 2, while our Theorem 3 gives 

Urn f M - f n » V ^ ( - 1 ) " f » , ^ ( n + feV1 ( - D " r • 
lim fB (x) - (-1) p k <fc + n ) - n! 2- ( 1 ) V k > n \ J n 
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TILING THE PLANE WITH INCONGRUENT REGULAR POLYGONS 
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Professor Michael Edelstein asked me how to tile the Euclidean plane with 
squares of integer side lengths all of which are incongruent. The question can be 
answered in a way that involves a perfect squared square and a geometric applica-
tion of the Fibonacci numbers. 

A perfect squared square is a square of integer side length which is tiled 
with more than one (but finitely many) component squares of integer side lengths 
all of which are incongruent. For more information, see the survey articles [3] 
and [5]. A perfect squared square is simple if it contains no proper subrectangle 


