A PARTIAL DIFFERENCE EQUATION RELATED TO THE FIBONACCI NUMBERS

L. CARLITZ
1. Consider the equation
Y“mn ~ urn-l,n - um, n-1 "~ um—Z,n + 3U'm-l,n—l " “m,n-2 =0
(1.1)
(mz2 2, n2> 2).
If we put
_ =4 m n
(1.2) G(x,y) = . Xy
m, n=0
and
2 2
(1.3) f(x,y) = l-x-y-x" + 3xy-y~ ,
it follows from (1.1) that
(1.4) f(x,y)G(x,y) = a +bx tcy,

where a,b,c are constants. Indeed it is evident that

(1.5) a=u b=mu -u

Thus if Yoo’ %107 Y1’ OF equivalently a, b, c, a;‘e assigned u is
uniquely determined for all non-negative integers m,n. We shall
show that the general solution of (1.1) can be expressed in terms of

Fibonacci numbers.
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2. If we put

= (1 -3,

| —

(2.1) a=5(1+VvV5), §-=

o)

it is easily verified that

1 - (a40)(x +y) +ab (x°+y5)+(al+8%)xy

(1 - ax-gy)(l -8x - ay)

l—x—y-x2+3xy-y2 ,

so that

(2.2) : f{x,y) = (1 - ax -By)(l - Bx - ay)
We now consider the case

(2.3) a=0, b=1, c=-1

Then

x-y _ 1 1 _ 1
flx,y) a-B |l - ax- By 1 - gx - ay

1 g n n
e {(ax + 8y)" - (8x + ay)"}
n=0
_ 1 °2° (m;n)( mgn_an m) m n
a
m, n=0

If an denotes the solution of (1.1) and (2. 3) holds, we have

therefore

2.4 _ /m+n a B -a §
(2.4) F__ ) e

Now it is evident from (1. 4) and (2. 3) that
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(2.5) F F =0 ,

= - F ,
mn nm nn

so that it will suffice to determine an when m > n.

If as usual we put

o Gn
(2. 6) Fn = -*T—T—
then it follows from (2. 4) that
_ n m+n
(2.7) an = (-1) «( m ) Fm-n (m 2. n)

In view of (2.5), this result can be expressed in the following

form:
X-y _1ypmtn mmn _nm
(2.8) Ty - % DTV FE L, Ky -xy )
m >n
We can also evaluate
o m-1
_ m n
(2.9) ®(x,y) = = £ F__x
m=1 n=0
Indeed, by (2.7), we have
o0 . 0
®(xy) = = (_l)nxnyn 5 (k+§n) Fk xk
n=0 =0
0
k <° n k+2n, n n
= X Fkx z  (-1) (1_1 )x'y
=0 n=0

Now it is known that
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®  k+2n _n 1 2 k
= (O x = ,
n=0 vV1-4x 1+vV1-4x
so that
1 co k
ctn - o T on (i
V1t+éxy k=0 1+ V1-4x
This reduces to
z 2x
(2.10) ®(x,y) = . B —
Vitdxy(l-z-2") 1+ V1-4xy
We have also
2.11 ®(x,y) - oy, b J
( ) (<, y) y:x) = 5
It is not difficult to verify that
1 _ e 1-V1+dxy-2 a x
I-az ~ (1+V1+dxy) -4 ax(I- ax- By) ’
so that
2
z _ (1+\/m) -1+x+2x7-2xy+(l -x) V1-4xy
1 2 4xf(x, y)
-z-2
xty-2xy+(x-y) V1-4xy
21(x, y)
It follows that
- 2(x-y) _ x-y
®loy) - elyx) = gy T Moy

in agreement with (2.11).

3. We next take the case

(3.1 a=2 b=c=-1
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Then
2-X- 1 1 ca n
f(X,y}; = 1- ax- 8y +1_ Fx=ay = X {(ax+ By) + (Bx+ ay)n}
n=0
- 3 (mr;n) (a™g™ + a™™) X Y
m, n=0

Thus, if Lmn denotes the solution of (1.1) when (3.1) holds, we have

(3.2) L = |

Also it is evident from (1. 4) and (3.1) that

(3.3) , L = L ,

so it will suffice to evaluate Lrnn when m 2 n. If we put

n n
(3.4) Ln = a + 8
it follows from (3. 2) that
_ (_q1\ min >
(3.5) L= (DL (m2a)
(
By (3. 3) this result can be stated in the form
2-x- 0 n 2n, _nn
(3.6) ey = 2F (LT
n=0
n m+n m n, n.m

z (-1)

VL plx Ty By ).
m>n

m



190 A PARTIAL DIFFERENCE EQUATION RELATED October

4. We now take
(4.1) a=1, b=c=0

and let Gmn denote the solution of (1.1) in this case. Thus it is

clear that
D
1 _ m n
m, n=0
Comparing this with
- (=]
X-y m n
ix,y) ~ = Fan* ¥
m, n=0
we get
== m n = m n
(x-y) z Gmnx'.y = = anx y oo,
m, n=0 m, n=0
so that
(4. 3) Gm-l,n - Gm,n-l = an (m>1, n>1)

It is evident from (4. 2) that

(4. 4) G = G
mn nm
and
G = G = F

(‘_1' 5) mo om m+l
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If m> n it follows from (4. 3) and (2.7) that

G = F +(-1) F

mn m+l, n+l m-n+l

Repeated application of this formula leads to

n
_ r mint+l
(4. 6) Span = F GO ) F e

r=0

(m > n)

By (4. 4) this result can be stated in the following form,

o 1

1 _ r 2n+tl n n

fxy) ~ = = (1) r‘) 2n-2r+1 * Y
n=0 r=0

(4.7)

(Xm n, n m
m+n-2r+l y By )

5. It is now easy to express the general solution of (1.1) in terms
of F , L ,G and therefore in terms of F, and L,. As we
mn mn mn k k

have seen above, if the numbers u are assigned, u

00’ “10° “o1
is uniquely determined for all m,n > 0. Indeed we may put

mn

(5.1) u = AF__+BL__+CG ,

where A, B,C are independent of m,n. Then

Uyg = AFOO + BLOO + CGOO

(5.2) U = AF10+BL10+CG10

uy; = AFOl + BLOl + CGOI
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But by (2.7), (3.5), (4.4) and (4.5)

L =2, G =1

Foo = 0 00 00
Flp=L Ljg=1L Gg=1
Foy = b Lo = L Gy = 1

Substituting these values in (5. 2) we find that

1

A= 2{10 - Uo1)
1
(5. 3) B = Yoo ~ z(u10 + uOl)
C = +u +u

“Yo0 " ™10 T Y01
Thus (5.1) becomes

1 1 1
Yon = 200 7 %01 Fmn T Moo T 30 7 2
(5. 4)

T -ugg T TGy

Finally, making use of (2.7), (3.5) and (4.6), we can express u .

explicitly in terms of F, and Gk'

k
6. Itis of some interest to extend the solutions of (1.1) to arbitrary
integral values of m and n. In the first place we define an by

means of

m n n m
- _ mtn, « B8 - a« §
(6.1) Emn_ (m) «-g
for all integral m,n. Now since
(P2 = 0 (o <n <m)

it follows that
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(6.2) Fm,—n: 0 (0o <n <m);

similarly we have
(6. 3) F—m,n = 0 (o<m<n).
Also since, by definition,

( ) = 0 (m > o, n > o)

we have

(6. 4) F—m,—n =0 (m>o, n> o).

On the other hand, since

R = (P (s m),
it follows that
(6. 5) Fo n - (-1)™™ (“r;]l) F_,  (n>m);
similarly
(6. 6) F = -yl (m > n) .

-m, n n m-+n
Note that in all cases we have

(6.7) F__ = -F

(6.8) F_ =

for all integral n, then (6.1) becomes
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n m+n m m+n)

(6.9) F = (-1) ( ) F = -(-1) " (

mn m m-n m n-m

It remains to show that an as defined by (6.1) or (6.9) does
satisfy (1.1) for all m,n. We have

an - Fm—l,n B Fm, n-1 " Fm-—Z,n * 3Fm--l,n-l - Fm, n-2
- (;l)n (mzjr-ln)Fm-n - (1" (mrrtr-lil) Fm-n-l
L P G IR o Gt B N
08 D Gt N U5 Ul i B SO
Now making use of
Fn+l - Fn *. Fn—l ’

which holds for all integral n, we find that an satisfies (1.1).
The extension of Lmn can be carried out in exactly the same

way. We define

n m+n

(6.10) Lo = GO ) Ly
for all integral m, n, where
(6.11) L = %482

for all integral n.

As for G , we require that
mn

(6.12) G -G = F

for all m,n. If n is negative we replace n by -n, so that (6.12)

becomes
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Gm-l,-n-Gm, -n-1 ~ Fm,—n'

This may be written as

m, -n-1 C'rn-l,fn B Fm, -n ’
which implies
n-1
m, -n = m-n, o0 z Frn-r, -ntr-1
r=o
We put (compare (4.5))
(6.13) Smo 7 Com T Fmt
for all m; it follows that
n-1
(6.14) Gm, -n = Fm—nH - x Frn—r,-n+r+l (n21)
r=o

Similarly if m 1is negative we get

m-1
(6.15) G_m n = Fn—m+l + > F (m > 1)
r=o

. Indeed we {find that G—m o 28 defined by (6.15) satisfies (6.12) for

2

all n. It can be verified easily that

(6.16) G _ =G

for all m, n.

Finally we can show that Grnn as defined by (4. 6), (6.14) and

(6.15) satisfies (1.1). We omit the details of this verification.
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7. We remark thatthe difference equation(l.1l)can be generalized

in an obvious way. Let«, g be roots of the quadratic equation
2
(7.1) x" -px+tq = 0,

where p,q are arbitrary numbers, and put

2 2 2
fHx,y) = (L-ex-fy){(l-gx-aey) = 1 - p(xtq) + gx  + (p -2q)xy + qy

Then the generalized equation is

(7.2) u - pu

_l,.
m, n m-1l,n au

m-2,n

- pum’ n-1

+ (pZ—Zq)u + qu = 0

m-1,n-1 m, n-2

The results obtained above for (1.1) can be carried over without

difficulty to the more general equation (7. 2).

POKRKHOCHRKXAIKXAKXKXK

Continued from page 176.

Equating coefficients in (1) and (3), one obtains, the Binet form

. ot Bn
n o - B
If, on the other hand we let y = 2, y'= 1; x = 0, equation (l)be-
comes ax x e n n, x°
y = e + eB = z (cx + 6 ) —r
n=0 n.
The series solution yields ug = 2 aLndul =1 sothat equation (3) becomes
% Lpxn
= 3 . ,
y n=0 n.
and one obtains L, = oM+ 611
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