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1. INTRODUCTION
We continue our study to acquaint the begi'nner with linear re-
currence relations and the method of generating functions for solving
them (see articles in [l] and [2] ). Inthis concluding article we shall
consider recurrence relations in which there is more than one inde-

pendent variable.

2. DEFINITION

A partial linear recurrence relationin twoindependent variables

m,n is as equation of the form

k p
(2.1) s 3 aij(m,n) y(m+i, nt+j) = b(m, n)
i=0 j=0

where aij and b are given functions of the discrete variables m
and n overthe set of non-negative integers. Partial recurrence re-
lations in three or more independent variables may be defined in a
similar way.

If b(m,n) = 0, relation(2.1)1is called homogeneous. The equa-
tion contains (k+l)(ptl) possible terms and is said to be of order k
with respect to m and of order p withrespect to n. To solve cer-
tain recurrence relations we find it convenient to apply a generating

function transform.

3. A SERIES TRANSFORM
The exponential generating function for the sequence {y(m,n)},

(myn=20,1,2,...) is defined by the double infinite series

oe oo Sm tn
(3.1) Y(s,t) = X by y(m, n) o aT

m=0 n= 0
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Ifthe series (3.1) converges when Is l <a and ltl < 3 simultaneously,
then all of the derived series of (3.1) will also converge in the same

region. Thus, we have

e oo m-1 n
oY s t
I ) Y m y(m,n) AT o’
m=1 n=0
(3.2)
Co o0 Sm tn

m=0 n=0

and it is seen that (dY/ds) is the exponential generating function of

the sequence y(m+l,n) . Similarly, one easily obtains the equations

oo = m n

aY - t
(3.3) 5t ° X = ymnt) o oo
m=0 n=0
and
aZY o0 o o
(3.4) 3ot - p s y(m+l,n+l) =T nT
m=0 n=0

which furnish exponential generating functions for the sequences

{y(m,n+l)} and {y(m+l,n+l)} respectively. Ingeneral, the relation
6i+j v o0 oo Jm o n

(3.5) &> - 5 3 ymt,ah) I+ oo

T .
ds dt m=0 n=0

is the exponential generating function of the sequence {y(m+i,n+j)}.

This equation permits us to transform linear partial recurrence re-

lations (2.1) where the coefficients aij(m, n) are all assumed to be

constants (i.e., nota functionof m and n). If we then multiply both
m n

sides of (2.1) by rin—" tH,— andsum on m and n from zero toinfinity,

we get the transformed equation
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kop Sty
(3. 6) DIED 245 5 - B(s,t) ,
i=0 j=0 ds~ at
where
o oo Sm tﬁ
(3.7) B(s,t) = X 2  b(m,n) =T nT
m=0 n=0
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After the transformed equation is solved for Y, we then obtain the

sequence {y(m,n)} either from the relation

m+tn
Y
(3.8) y(m,n) = Q——?-n——ﬁ -0
ds 9t 5=
t=20

or by expanding the function Y(s,t) in the form (3.1).

We illustrate the procedure with two simple examples in which

b(m,n) = 0.

4, EXAMPLES

Consider, for instance, the partial recurrence relation

(4.1) y(m+l,n+l) - y(m+l,n) - y(m,n) = O

with the given conditions

S y(m,0) = 0 if m+#0
(4.2) y(0,n) = 1
1 Y(m: Il) - O

if mgn

The transformed equation for (4.1) is then

(4.3) a°Y oY
35

dsdt
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with the conditions
t
4. 4) . Y(s,0) = 1, Y(0,t) = e
Now, a particular solution of (4. 3) is

(4.5) Y(s,t) = e’ I,(2 Vst) ,

where IO(Z) is the modified Bessel function of the first kind defined

by
. oa 2m
(4.6) o) = 3 22
m=0 (m:)

We can obtain the sequence {y(m,n)} by expanding (4.5). Thus,

t = sm tn
Y(s,t) = e 3 2
m=0 (m:)
(4.7) .
) °20 t‘] oo sm tn
- T2
j=0 o (m)
Letting n = m+j, we then have
co  m tm © n-m
Y(s,t) = _(rn—:)’z > (n-m)! o
(4. 8) m=0 n=m
oo m oo n ¢
= % mr 2 (w) oar
m=0 n=m

Hence, from (3.1) it is clear that

1

(4.9) y(m, n) (n) , (m=0,1,...,n)

m

= 0 , n<m ,
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which simply represents the elements of Pascal's triangle (thatis, the
binomial coefficients).

As a second example, we take the partial recurrence relation
(4.10) y(m+1l,n+l) - y(m, n+l) - y(m,n) = 0
with the conditions

(4.11) v(0,n) = Fn; y(m, 0) = Fm ,

where Fn denotes the nth Fibonacci number. Transformation of
equation (4.10) yields

3% v

(4.12) S

- ]
- Sf - Y =0

with the conditions

(4.13)
ta ta
Y(0,t) = L e LI e 2:]
V5
1 1
where a1—§<1+J—5_>, a2—7<l—f5_>.

The solution of equation (4.12) is

(4.15) Y(s,t) = =

V5

al(t+s) az(t+s)
e e

Now, employing the inverse transform (3. 8) yields

m+n

9 1 m+n " m+n
(4.16) y(m,n) = ——— - (alb - a, )

ds ot

o O

n
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which is the solution of(4.10)and representsa Fibonacci array shown

in the following table

n
0 0 1 1 2 3 5
1 1 1 2 3 5 8
2 1 2 3 5 8 13
3 2 3 5 8 13 21
4 315 8 13 21 34
5 5 8 13 21 34 | 55

Fibonacci arrays of higher dimension can also be obtained. These
involve the solutions of partial recurrence relations in three or more

independent variables.

5. CONCLUDING REMARKS
The above examples involved the solution of two partial recur-
rence relations having only constant coefficients. Recurrence rela-
tions with polynomial coefficients may also be transformed by the
method of generating functions. For instance, it is easy to show that

the recurrence relation
k p

(5.1) D> (aij + mBij + n)’ij) y(m+i, nt+j) = b(m,n) ,
i=0 j=0

having linear coefficients, can be transformed to the equation
k P

(5:2) X 3 (ay +By b+ Y, )
i=0 j=0

ai+j v

- = B{(s,t) ,
ER N (=, £)
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where B(s,t) is given by (3.7), and ¢ and ¥ are the differential

operators

. ~ ) _ 9
(5. 3) $=5s 2, yv-1 2

I wish to thank Prof. Paul F. Byrd for his many helpful sug-

gestions during the preparation of this article and the two previous

ones.
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ASSOCIATIVITY AND THE GOLDEN SECTION
H. W. GOULD

West Virginia University, Morgantown, West Virginia
E. T. Bell, A functional equation in arithmetic, Trans. Amer.
Math. Soc., 39{(1936), 341-344, gave a discussion of some matters
suggested by the functional equation of associativity
o(x, oy, z)) = ¢e(e(x ), z)
As a prelude, Bell noted the following theorem.
THEOREM 1. The only polynomial solutions of ¢(x, ¢(y, z))=el(e(x, y), 2)
in the domain of complex numbers are the unsymmetric solutions
o(x,v) = x, @(x,y) =y, and the symmetric solution
e(x,y) = a + b(x +y)+cxy,
in which a, b, ¢, are any constants such that b2 -b-ac=0.
It is amusing to note a special case. The operation defined by

x % = 1l +b(x+vy)+xy

(£ V5) .

[N

is associative only if b =

HOCKAKHOOKAKHHKKHKAKAK K



