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When d = 3, a2 = 1, a3 = 1, we obtain from (4.2) the Neumann sequence (2.4), 
which, as we have noted, can also be generated by Wilsonfs function (2.1). 

Finally, we observe that 

(4.3) 
fr = FP(l9 5) = (-l)r/5 • Fr+1(l, 5) 

&P = FPa, i) + ( - D ^ ( i } . 1 ) . 
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1. INTRODUCTION 

If / is the Dirichlet product of arithmetical functions g and h9 then by defi-
nition 

/(") " E 9(d)h(n/d). 
d\n 

In this paper we define a convolution of two arithmetical functions that general-
izes the Dirichlet product. With this new convolution, which we shall refer to as 
the the "fc-prime product," it is possible to define arithmetical functions which 
are analogs of certain well-known functions such as Eulerfs function (f)(n) , defined 
implicitly by the relation 

(1.1) J2 Hd) = n. 
d6=n 

Other well-known functions to be considered in this paper include x(n) and o(n) 
given by x(n) = El and o(n) = Zd» where the summations are over the positive di-
visors of n. The familiar Moebius function y(n) is defined as the multiplicative 
function with the evaluation y(p) = -1 and \i(pe) = 0 if e > 1, and satisfies the 
relation 

<*-2> p«>-e(n) = {J HZZlL 
d6~n v 

Note that y(l) = 1, since y is a nonzero multiplicative function. Upon applying 
the Moebius inversion formula to (1.1), one obtains the simple Dirichlet product 
representation for <J), 
(1.3) <K«) = £ UW)5. 

d& = n 
Another function which may be defined by means of the Dirichlet product is 

q(n)9 the characteristic function of the set Q of square-free integers, 
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(1.4) q(n) - £ v2<d> - £ ^ W ) » 

where v2(n) = y(m) if n = m2 and v2(ft) = 0 otherwise. The representations (1.3) 
and (1.4) are extremely useful in the development of the theory of the Euler func-
tion and the set of square-free integers. 

In Section 2, we define appropriate generalizations of the concepts mentioned 
above and prove a generalized Meobius inversion formula (Theorem 2.4). 

Included in Section 3 is a short discussion of the usefulness of the results 
obtained in Section 2 and an indication of the direction in which further study 
should be directed. 

2. THE GENERALIZED PRODUCT 

For each integer k .> 1, let Lk represent the set of positive integers ft with 
the property that if a prime p divides ft, then p k also divides ft. A number in Lk 
is said to be "fc-full." Let Qk be the set of positive integers ft such that each 
prime divisor of n has multiplicity less than k. A number in Qk is said to be 
"fc-free." Any positive integer ft can be written uniquely in the form n = ftift2, 
where ftx e Lk9 n2 £ Qk9 and (nl9 ft2) = 1- If m and ft are positive integers with 
unique decompositions m = 7721m2 and n = n1n2, then m and n are said to be "rela-
tively /c-prime" [notation: (m9 n)k - 1] provided that (m2, ft2) = 1. Given arith-
metical functions /(ft) and g(n) 9 we define the "/c-prime product" of / and g (nota-
tion: f° g) as follows: 

(fog)(n) - £ f(d)g(S), 
d6 » n 

(d.<S)k-« 

For /c = 1, the /c-prime product reduces to the Dirichlet product. The next two 
theorems are proved by arguments similar to those used in the case k = 1. 
THEOREM 2.1: The /c-prime product is an associative operation. 

More can be said about the algebraic structure of our system. As is the case 
in the Dirichlet product, the arithmetic functions form a cummulation ring with 
unity under addition and the /c-prime product. 

THEOREM 2.2: If each of g and h is a multiplicative function, then g o h is mul-
tiplicative. 

We now define the generalization of the Moebius function which was mentioned 
earlier. 

DEFINITION 2.1: Let ]ik(n) denote the multiplicative function for which \ik(pn) is 
-1, 1, 0 whenever 0 < n < k9 k < n < 2k9 and n >_ 2k9 respectively. Clearly, this 
is a valid generalization of Moebius1 function, and we shall see later on that 
]Xk(n) plays much the same role in the development of the theory for the fc-prime 
product as y(ft) does in the case of the Dirichlet product. In particular, we have 
the following two theorems. 

THEOREM 2.3: £ Vk(d) = e(n). 
d6«n 

<d,<S)k-l 
PROOF: For ft = 1 the theorem is obvious. By Theorem 2.2, we need only prove 

the theorem for prime powers, ft = p e
9 e > 0. Now, if e < k9 we have 

£ \xk(d) - yfc(l) + \ik{pe) = 1 - 1 = 0 , 

,«>k-l 

by the definition of relatively /c-prime and \xk. In the case e _> k9 we have 

d6 = pe 

(rf,6)k = l 
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then 

E M ^ ) = E Mpa)= E Mpa) 
dS =pe , a = 0 a = 0 

<d,6)k-l max(a,g-a)^k max(a, e - a) >k 
a<2k 

by definition of \ik. And this expression is k - k or (e - fc + 1 ) — O - k + I), 
according as e 2 2fe or fe i e < 2k. In either case, we have the desired result. 

Let £(n) denote the arithmetical function which is identically 1. 
THEOREM 2.4: If both f± and f2 are arithmetical functions, then fx = f2 o Z if and 
only if f2 = yfe o ^ . 

PROOF: I f 

(d,$)k=l 

E /2<w> = E ^ W i f f l = E ^Wiffl. 
d<$ = n ptfcS = n DE6= n 

(d,6)k = l (DE,6)k=I (Z?,6.)fc = l 
( 0 , £ ) f e « l (£",D6)fc = l 

'ff|n D6 = n/E 
(E,D6)k = l {D,6)k = l 

The inner sum here is 1 is n/E'= 1 and 0 otherwise, by Theorem 2.3, so the expres-
sion reduces to f1 (n). The proof of the other half is similar. 

It is interesting to note that a shorter proof of this theorem can be obtained 
by using only the algebraic structure that was mentioned following Theorem 2.1. 

The last theorem corresponds to the Meobius inversion formula in the theory of 
the Dirichlet product. 

From the familiar representation of Euler's function as a Dirichlet product, 
we are led to the following generalized <j) function. 

DEFINITION 2.2: (|>*(n) = .]jjj \lk(d)6:. 
d<5 = n 

(d,6)k«l 

By Theorem 2.4 and the definition of (f)J(n), we have immediately 

THEOREM 2.5: ] T <f>*(tt) = n. 
dS = n 

(d,6)k =1 

Also, by Theorem 2.2, we have 

REMARK 2.1: <f)£(n) is multiplicative. 

We now define the fc-prime analog of the square-free numbers. An integer n is 
said to be "^-square-free" provided that if a prime p divides n, then the multi-
plicity of p is in the range {1, 2, . .. , k - 1, k + 1 , k + 2, ..., 2fc '- 1}. So if 
^*(n) denotes the characteristic function of the set Q* of /c-square-free numbers, 
then q*(n) is multiplicative and, for prime powers pe, has the evaluation 

_ e. = ( 1 if ^ e {0, 1, ..., k - 1, fc + 1, fe + 2, ..., 2& - 1} 
^k^P I 0 otherwise. 

3. FURTHER RESULTS 

The algebraic results above coincide with classical results in the study of 
arithmetical functions. Another area of interest is in the area of analytic num-
ber theory. An important technique for obtaining estimates on the asymptotic 



44 COMBINATORIAL ASPECTS OF AN INFINITE PATTERN OF INTEGERS [Feb, 

average of an arithmetical function f is to express / as a Dirichlet product of 
functions g and h. Therefore, it is natural to investigate the possibility of ex-
pressing a function / as a product of two functions under our new convolutionj and 
whenever such a representation exists, to use it to obtain asymptotic results for 
/. This would allow us to investigate certain functions which do not arise natu-
rally as a Dirichlet product. Some results have been obtained by this method but 
more refinements are required. 
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1. INTRODUCTION 

In two previous papers, [3] and [4], certain basic properties of the sequence 
{An(x)} defined by 

A0(x) = 0, A1(x) = 1, A2(x) = 1, A3(x) = x + 1, and 
(1.1) 

An(x) =xAn_2(x) - An_^(x) 
were obtained by the authors. 

Here, we wish to investigate further properties of this sequence using as our 
guide some of the numerical information given by L. G. Wilson [5]. Terminology and 
notation of [3] and [4] will be assumed to be available to the reader. In parti-
cular, let 


