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I. INTRODUCTION 

The kth polygonal number of order n (or the feth n-gonal number) Pn is given by 
the equation 

pn = pn = fe[(n _ 2){k „ 1 } + 2 ] / 2 # 

Diophantus (c. 250 A.D.) noted that if the arithmetic progression with first term 
1 and common difference n - 2 is considered, then the sum of the first k terms is 
P£. The usual geometric realization, from which the name derives, is obtained by 
considering regular polygons with n sides sharing a common angle and having points 
at equal distances along each side with the total number of points being P™. Two 
pictorial illustrations follow. 

Pi = 10 P\ = 15 

The first forty pages of Dickson's History of Number Theory, Vol. II, is devoted 
to results on polygonal numbers. 
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In 1968, W. Sierpifiski [6] showed that there are infinitely many triangular 
numbers which at the same time can be written as the sum, the difference, and the 
product of other triangular numbers. It is easy to show that 4(w2 + I)2 is the 
sum, difference, and product of squares. Since then, several authors have proved 
similar results for sums and differences of other polygonal numbers. R. T. Hansen 
[2] considered pentagonal numbers, W. J. OfDonnell [4, 5] considered hexagonal and 
septagonal numbers, and S. Ando [1] proved that for any n Infinitely many n-gonal 
numbers can be written as the sum and difference of other n-gonal numbers. Al-
though Hansen gives several examples of pentagonal numbers written as the product 
of two other pentagonal numbers, the existence of an infinite class was left in 
doubt. 

In this paper we show that for every n there are infinitely many n~gonal num-
bers that can be written as the product of two other n-gonal numbers, and in fact 
show how to generate infinitely many such products. We suspect that our method 
does not generate all of the solutions for every n, but we have not tried to prove 
this. Perhaps some reader will be challenged to try to find a product which is 
not generated by our method. Moreover, except for n = 3 and 4, it is still not 
known whether there are infinitely many n-gonal numbers which at the same time can 
be written as the sum, difference, and product of n-gonal numbers. 

Our proof uses the well-known theory of the Pell equation. We also use a re-
sult (not found by us in the literature) on the existence of infinitely many solu-
tions of a Pell equation satisfying a congruence condition, given that one solu-
tion exists satisfying the congruence condition. In Section 2 we note some facts 
about the Pell equation and prove this latter result. In Section 3 we prove our 
theorem on products of polygonal numbers. 

2. THE PELL EQUATION 

Although it was first issued by Fermat as a challenge problem, and a complete 
theory was given by Lagrange, the equation 

(1) u2 - Dv2 = M, 

where D is not a perfect square, is usually called the Pell equation. The special 
case 

(2) u2 - Dv2 = 1 

always has an infinite number of solutions when D is not a square. In fact, if 
(tti, i?i) is the least solution of (2), then any solution (UJS Vj) is given (see, 
e.g. [3, pp6 139-48]) by the equation 

(3) Uj + i/DVj = (% + /DVi)d . 
Also, it is easy to see that if (u*9 V*) is any particular solution of (1), then 
(w*» Vp9 given by 

(4) w* + /Dvf = (u* + /Dv*) (UJ + i/DVj ), 
is also a solution. Thus, we can generate infinitely many solutions to (1) if we 
can find one solution. 

In what follows, Z+ denotes the positive integers and (a9 b) = (<?, d) (mod m) 
means that a = a and b = d (mod rn). We first prove a result which is heavily de-
pendent upon the representability given by (3) of the solutions to (2). 

THEOREM 1: If D £ Z+ is not a square, then for any m £ Z+ there are infinitely 
many integral solutions to the Pell equation 

u
2 _ DV

2 a i With (us V) = (1, 0) (mod m). 
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PROOF: Suppose (ul9 V±) is the least solution to (2) and (uj9 Vj) is the so-
lution given by (3). Since there are only m2 distinct ordered pairs of integers 
modulo m9 there must be j, I e Z such that (Uj9 Vj) = (u£, i>£) (mod m). Using 
(3) we notice that, for any t £ Z, 

Ut + y/T)Vt = (li1 + v/Dt?1)(ut_1 + /Dvt_1) 
so 

u+ = unw+ _ + Dv.v, n and TJ, = v,u+ _ + u,y, .. 

Applying these equations to the above congruence, we deduce 

(5) uiuo-i + ®vivj-i E uiui-i + ® v \ v i - \ (moc* m) 
and 
(6) viuj-i + Miyj-i ~ v\ui-\ + wiy£-i (mod w) • 

Multiplying (6) by ux and subtracting yx times (5), we have 

(u\ - 'Dv\)v^1 = (u\ - Vv\)vl-1 (mod m) 9 

or since u^ - T)v\ = 1, 
^j-1 E Vl-1 (mod 77?) . 

Similarly, u x times (5) minus Dv1 times (6) yields 

so in fact 
0*^-1* Vj'-i) E (̂ £-l» ^-l) (mod 777). 

We can conclude, therefore, that for K = |j - £|, 
(w0, 7J'0) =' (wsX, ys^) (mod 772) 

for any s £ Z+. But u0 = 1 and y0 = QJ s o t n e theorem is proved. 

As a corollary we can prove the following theorem about the general Pell equa-
tion showing infinitely many solutions in prescribed congruence classes. 

THEOREM 2: If m ,D £ Z + , £ is not a square, and the Pell equation u2 - Dv2 = M has 
a solution 

(u*9 v*) = (a, 2?) (mod 777), 

then it has infinitely many solutions 

(uf» t>f) = (a, 2?) (mod 777). 

PROOF: Let (u*, v*) be the solution to (1) provided in the hypothesis, and, 
for t £ Z+, let (ut9 ft) be solutions of (2) guaranteed by Theorem 1, that is, 

(ut9 vt) E (1, 0) (mod 777). 

Then the solutions (u*, v*) of (1) obtained from these solutions by applying (4) 
are such that 

u% = u*ut 4- Dv*vt S a * l + D ' b * 0 = a (mod m) 
and 

v* = v*ut + u*ut E & •. 1 + a • 0 = b (mod 777), 

as desired. 

The following corollary follows by taking 777 in the previous theorem to be the 
least common multiple of m1 and 77?2. 

COROLLARY: If m19m2S D £ Z + , D is not a square, and a2 - Db2 = M, then there are 
infinitely many solutions to the Pell equation u2 - Dv2 = M with u' = a (mod T ^ ) 
and v = b (mod TT?2) . 
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3. POLYGONAL PRODUCTS 

In this section we first show that any nonsquare n-gonal number is infinitely 
oft en the quotient of two n—gonal numbers* The theorem that n—gonal products are 
infinitely often n-gonal and a remark on the solvability of a related equation 
complete this section. 

THEOREM 3: If the n-gonal number P = Ps is not a square, then there exist infi-
nitely many distinct pairs (Px , Py) of n-gonal numbers such that 

(7) 

PROOF: Recalling that Px = hx[(n - 2)(# - 1) + 2] and setting n - 2 = p, Eq. 
(7) becomes 

Multiplying by 4p to complete the square gives 

{2rx - (p - 2))2 - (p - 2) 2 = P[{2ry - (p - 2))2 - (p - 2)2L 

t 

,2 

Px 

-

= 

(* 

** 

h&[ (n 

- 2)# 

- PePy 
- 2) (a: -

= P[pz/2 

1) + 

- (p -

2] and 

-2)z/]. 

setting n 

Setting 

(8) 

we get the Pell equation 

(9) 

with M = (r - 2) 2 - P(r - 2) 2. 

u = 2PX - (p - 2), 
v = 2P2/ - (p - 2), 

w2 - Pv2 = M9 

Thus, in order to ensure infinitely many solutions (xs y) to (7), it suffices 
to have infinitely many solutions (us v) to (9) for which the pair (x, y) obtained 
from (8) is integral. Put another way, it suffices to show the existence of in-
finitely many solutions (u*, v*) of (9) for which the congruence 

(u*, v*) = (-(P - 2), -(p - 2)) = (p'+ 2, r+ 2) (mod 2P) 
holds. 

But notice that, since P1 = 1, a particular solution of (7) is x = s9 y - 1, 
and these values of x and y give 

u = (2s - 1 ) P + 2, 
V = P + 2, 

as a particular solution of (9). Thus, we have a solution (w*, u*) of (9) with 
(u*, V*) = (P + 2, p + 2) (mod 2P ) . Theorem 2 guarantees the infinitely many so-
lutions we are seeking. 

Our final theorem is now a straightforward corollary. 

THEOREM 4: For any n _> 3, there are infinitely many n-gonal numbers which can be 
written as a product of two other n-gonal numbers. 

PROOF: The case n = 4 is trivial. By the previous theorem, we need only show 
that Ps is not a square for some s. But for n ^ 4, at least one of P2 = n and 
P9 = 9(4n - 7) is not a square. 

REMARK 1: We originally tried to prove that 

Pk - fc[(n " ?)(fc - 1) + 2]/2 = P^ . P^ 

infinitely often by setting Px ~ k and 

Pj, « (<n - 2)(PX - 1) + 2)/2, 

and solving the Pell equation that results from this last equation. This method 
works if n + 2t2 + 2, and thus, for these values of n5 there are infinitely many 
solutions to the equation PPx = PxPy • 
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REMARK 2: There a r e 51 s o l u t i o n s of Pj = P^Py1 w i t h Px < 1 0 6 . There a r e 43 s o l u -
t i o n s of P£ = Ps

nPy
n w i t h 5 <. n £ 36 and Px

n < 1 0 6 . In j u s t two of t h e s e , x = Ps : 
p 5 _ p 5 p 5 o-nrl P^ = P^ P^ 
r i f 7 7 "" ^ 1 8 ^ 2 2 a i l U ^ 9 4 6 ^ 2 2 ^ 3 1 ' 

For 36 <_ n <L 720, there are no solutions with Px < 106. 
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1. INTRODUCTION AND SUMMARY 

In the sequel, k is a fixed integer greater than or equal to 2, and n is an 
integer as specified. Let Nk be a random variable denoting the number of trials 
until the occurrence of the kth consecutive success in independent trials with 
constant success probability p (0 < p < 1). Shane [6] and Turner [7] considered 
the problem of obtaining the distribution of Nk. The first author found a formula 
for P[Nk = n] (n >_ k) 9 as well as for P[Nk <. x] (x >. k) , in terms of the polynac-
ci polynomials of order k in p. Turner derived a formula for P[Nk = n + k - 1] 
(n _> 1) in terms of the entries of the Pascal-T triangle. Both Shane and Turner 
first treated the special cases p = 1/2, k = 2, and p = 1/2, general k. For these 
cases, their formulas coincide,, 

Presently, we reconsider the problem and derive a new and simpler formula for 
P[Nk = n + k] (w'2l 0), in terms of the multinomial coefficients (see Theorem 3.1). 
The method of proof is also new. Interestingly enough, our formula includes as 
corollaries the special formulas of Shane and Turner. We present these results in 
Section 3. In Section 2, we obtain an expansion of the Fibonacci sequence of or-
der k in terms of the multinomial coefficients (see Theorem 2.1), which is of in-
terest in its own right and instrumental in deriving one of the corollaries. 

2. THE FIBONACCI SEQUENCE OF ORDER K 

In this section, we consider the Fibonacci sequence of order k and derive an 
expansion of it, in terms of the multinomial coefficients. 


