6. COMMENTS

Even though each Fermat or Mersenne number is not the power (greater than one) of an integer, it is not known whether they are square-free. Naturally, we make a similar conjecture.
CONJECTURE 2: For each prime p and positive integer i, the number $L(p i)$ is squarefree.

REMARK: It has been shown in [5] that the congruence $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$ is closely related to the square-freeness of the Fermat and Mersenne numbers. We have shown, by a similar method, that this is also the case for the numbers $L\left(p^{i}\right)$.

It is well known that $\left(p, 2^{p}-1\right)=1$ and $\left(n, 1+2^{2^{n}}\right)=1$. Since the prime divisors of $L\left(p^{i}\right)$ are of the form $1+k p^{i+1}[4, p .106]$, it follows that

$$
\left(i, L\left(p^{i}\right)\right)=1 .
$$

Finally, we see that while $L\left(p^{i}\right)$ possesses many interesting properties, there remain unanswered some very elementary questions about this class of numbers.

REFERENCES

1. J. H. E. Cohn. "Square Fibonacci Numbers, Etc." The Fibonacci Quarterly 2, no. 2 (1964):109-13.
2. S. Ligh \& L. Neal. "A Note on Mersenne Numbers." Math. Magazine 47, no. 4 (1974):231-33.
3. N. Robbins. "On Fibonacci Numbers Which Are Powers." The Fibonacci Quarterly 16, no. 6 (1978):515-17.
4. D. Shanks. Solved and Unsolved Problems in Number Theory. 2nd ed. New York: Che1sea, 1978.
5. L. R. J. Warren \& H. G. Bray. "On the Square-Freeness of Fermat and Mersenne Numbers." Pacific J. Math. 22, no. 3 (1967):563-64.
6. 0. Wyler. Amer. Math. Monthly 71 (1964):221-22.

FIBONACCI NUMBERS OF GRAPHS

HELMUT PRODINGER
Institut für Mathematische Logik und Formale Sprachen, Wien, Austria
ROBERT F. TICHY
Patrubangasse 5, A-1100, Wien, Austria
(Submitted December 1979)

1. INTRODUCTION

According to $[1, \mathrm{p} .45]$, the total number of subsets of $\{1, \ldots, n\}$ such that no two elements are adjacent is F_{n+1}, where F_{n} is the nth Fibonacci number, which is defined by

$$
F_{0}=F_{1}=1, F_{n}=F_{n-1}+F_{n-2} .
$$

The sequence $\{1, \ldots, n\}$ can be regarded as the vertex set of the graph P_{n} in Figure 1. Thus, it is natural to define the Fibonacci number $f(X)$ of a (simple) graph X with vertex set V and edge set E to be the total number of subsets S of V such that any two vertices of S are not adjacent.

The Fibonacci number of a graph X is the same as the number of complete (induced) subgraphs of the complement graph of X. (Our terminology covers the empty graph also.)

Fig. 1
In [1, p. 46] the case of a cycle C_{n} with n vertices is considered, as in Figure 1. The Fibonacci number $f\left(C_{n}\right)$ of such a cycle equals the nth Lucas number F_{n}^{*}, defined by

$$
F_{0}^{*}=2, F_{1}^{*}=1, F_{n}^{*}=F_{n-1}^{*}+F_{n-2}^{*} .
$$

Let $X_{1}=\left(V, E_{1}\right)$ and $X_{2}=\left(V, E_{2}\right)$ be two graphs with $E_{1} \subseteq E_{2}$, then

$$
f\left(X_{1}\right) \geq f\left(X_{2}\right) .
$$

So the following simple estimation results:

$$
\begin{equation*}
n+1=f\left(K_{n}\right) \leq f(X) \leq f\left(\overline{K_{n}}\right)=2^{n}, \tag{1.1}
\end{equation*}
$$

where X is a graph with n vertices, and K_{n} is the complete graph with n vertices and $\overline{K_{n}}$ its complement.

If X, Y are disjoint graphs, then we trivially obtain, for the Fibonacci number of the union $X \cup Y$,

$$
f(X \cup Y)=f(X) \cdot f(Y) .
$$

2. THE FIBONACCI NUMBERS OF TREES

Trivially, the graph P_{n} is a tree with $f\left(P_{n}\right)=F_{n+1}$. Another simple example for a tree is the star S_{n} :

Fig. 2
The Fibonacci number $f\left(S_{n}\right)$ can be computed by counting the number of admissible vertex subsets (they do not contain two adjacent vertices) containing the vertex n or not containing n. Thus

$$
f\left(S_{n}\right)=1+2^{n-1}
$$

THEOREM 2.1: Let X be a tree with n vertices, then

$$
F_{n+1} \leq f(X) \leq 2^{n-1}+1
$$

PROOF: First, we prove the second inequality by induction. For $n=1,2$, it is trivial. Let X be a tree with $n+1$ vertices and let v be an endpoint of X. The Fibonacci number $f(X)$ can be computed by counting the number of admissible vertex subsets containing v or not containing v. The number of admissible subsets containing v can trivially be estimated by 2^{n-1} and the number of admissible subsets not containing v can be estimated by $2^{n-1}+1$ using the induction hypothesis. So we obtain

$$
f(X) \leq 2^{n-1}+\left(2^{n-1}+1\right)=2^{n}+1
$$

To prove the first inequality, it is necessary to prove a more general form; hence, we assume X to be a forest. We use induction and, for $n=1$, 2 , the estimation is trivial. Now we proceed by the same argument as above. Let $X=(V, E)$ be a forest with $n+1$ vertices and v be an endpoint of X. Let X_{1} be the induced subgraph of the set $V-\{v\}$ and let w be the adjacent vertex of v. Then X_{2} denotes the induced subgraph of the set $V-\{v, w\}$. Trivially, X_{1} and X_{2} are forests with n and $n-1$ vertices, respectively. By the induction hypothesis, we obtain

$$
f(X)=f\left(X_{1}\right)+f\left(X_{2}\right) \geq F_{n+1}+F_{n}=F_{n+2},
$$

and so the theorem is proved.
REMARK 2.2: There are natural numbers m such that no tree X exists with $f(X)=m$. This is evident because natural numbers m exist not contained in intervals of the form $\left[F_{n}, 2^{n-1}+1\right]$. Further, there are numbers m contained in such intervals that are not Fibonacci numbers of trees.
EXAMPLE 2.3: Let R_{n} be the graph with $2 n$ vertices as in Figure 3.

For the Fibonacci numbers of R_{n}, we obtain the following recursion

$$
f\left(R_{n+1}\right)-2 f\left(R_{n}\right)-2 f\left(R_{n-1}\right)=0, f\left(R_{1}\right)=3, f\left(R_{2}\right)=8
$$

The solution of this recursion is

$$
f\left(R_{n}\right)=\frac{3+2 \sqrt{3}}{6}(1+\sqrt{3})^{n}+\frac{3-2 \sqrt{3}}{6}(1-\sqrt{3})^{n}
$$

Some other examples are treated in more detail in Section 3.

3. EXAMPLES

Let $X=(V, E)$ be a graph and y_{1}, \ldots, y_{s} vertices not contained in V. Then, $Y=\left(V_{1}, E_{1}\right)$ denotes the graph with

$$
V_{1}=V \cup\left\{y_{1}, \ldots, y_{s}\right\} \quad \text { and } \quad E_{1}=E \cup\left\{\left\{y_{1}, v_{j}\right\} \mid 1 \leq i \leq s, v \in V\right\} .
$$

By the usual recursion argument, we obtain

$$
\begin{equation*}
f(Y)=f(X)+2^{s}-1 \tag{3.1}
\end{equation*}
$$

For an example, we take the following graphs:

Fig. 4
EXAMPLE 3.2: We consider the graphs Q_{n} with $2 n$ vertices and Q_{n}^{\prime} with $2 n-1$ vertices as in Figure 5.

Fig. 5
Let a_{n} and b_{n} denote the Fibonacci numbers of Q_{n} and Q_{n}^{\prime}, respectively. By our usual recursion argument, we obtain
1.

$$
\begin{aligned}
& a_{n}=b_{n}+b_{n-1}, \text { and } \\
& b_{n}=a_{n-1}+b_{n-1} .
\end{aligned}
$$

We now have
3.

$$
b_{n-1}=a_{n-2}+b_{n-2},
$$

and by adding (2) and (3),
and so

$$
\begin{aligned}
& b_{n}+b_{n-1}=a_{n-1}+a_{n-2}+b_{n-1}+b_{n-2} \\
& a_{n}=2 a_{n-1}+a_{n-2} ; a_{1}=3, a_{2}=7 .
\end{aligned}
$$

This recursion has the solution

$$
a_{n}=\frac{1}{2}(1+\sqrt{2})^{n+1}+(1-\sqrt{2})^{n+1}=f\left(Q_{n}\right) .
$$

EXAMPLE 3.3: Now we consider the graph V_{n} with $2 n$ vertices, as in Figure 5. By the usual recursion argument, we obtain
and so

$$
\begin{aligned}
& f\left(V_{n}\right)=f\left(V_{n-1}\right)+2 f\left(V_{n-2}\right) ; f\left(V_{1}\right)=3, f\left(V_{2}\right)=5, \\
& f\left(V_{n}\right)=\frac{1}{3}\left(2^{n+2}+(-1)^{n+1}\right)
\end{aligned}
$$

4. PROBLEMS

PROBLEM 4.1: Compute the Fibonacci number $f\left(L_{n}\right)$ of the lattice graph L_{n} with n^{2} vertices in Figure 6.

PROBLEM 4.2: Compute the Fibonacci number of the n-dimensional cube W_{n} with 2^{n} vertices in Figure 6.

PROBLEM 4.3: Compute the Fibonacci number of the generalized Peterson graph Pet n with $4 n+6$ vertices $(n \geq 1)$.

Fig. 7
PROBLEM 4.4: Give a lower bound for $f(X)$ in the case of a planar graph X with n vertices. Give estimations for $f(X)$ if X denotes a regular graph X of degree r or if X denotes an exactly k-connected graph.

PROBLEM 4.5: Let $\omega=\left(k_{n}\right)$ be an increasing sequence of natural numbers, then a sequence Ω of graphs $X_{1} \subseteq X_{2} \subseteq X_{3} \subseteq \ldots$ with $F\left(X_{n}\right)=k_{n}$ exists such that X_{i} is embedded as an induced subgraph in X_{i+1}. This is trivial if we take for X_{n} the complete graph $K_{k_{n}-1}$.

We define

$$
\delta(\omega)=\inf _{\substack{\Omega=\left(X_{n}\right) \\ f\left(X_{n}\right)=k_{n}}}\left\{\alpha:\left|E\left(X_{n}\right)\right|=O\left(\left|V\left(X_{n}\right)\right|^{\alpha}\right)\right\}
$$

If γ is a class of increasing sequences of natural numbers (e.g., all increasing sequences or the arithmetic progressions), then we define

$$
\Delta(\gamma)=\sup _{\omega \in \gamma} \delta(\omega) .
$$

Trivially, we obtain $\Delta(\gamma) \leq 2$.
The problem is to give better estimations for $\Delta(\gamma)$ in the general case or in the case where γ is the class of all arithmetic progressions.

REFERENCES

1. L. Comtet. Advanced Combinatorics. Dordrecht-Holland: D. Reide1, 1974.
2. F. Harary. Graph Theory. Reading, Mass.: Addison-Wesley, 1972.

SOME IDENTITIES AND DIVISIBILITY PROPERTIES OF

 LINEAR SECOND-ORDER RECURSION SEQUENCESNEVILLE ROBBINS
Bernard M. Baruch College, New York, NY 10010
(Submitted February 1980)
INTRODUCTION
Following Lucas [5], let P and Q be integers such that
(i) $\quad(P, Q)-1$ and $D=P^{2}+4 Q \neq 0$.

Let the roots of

$$
\begin{equation*}
x^{2}=P x+Q \tag{ii}
\end{equation*}
$$

be
$a=\left(P+D^{\frac{1}{2}}\right) / 2, b=\left(P-D^{\frac{1}{2}}\right) / 2$.
Consider the sequences

$$
\text { (iv) } u^{n}=\left(a^{n}-b^{n}\right) /(a-b), v_{n}=a^{n}+b^{n} .
$$

In this article, we examine sums of the form

$$
\sum\binom{k}{j} x_{n}^{j}\left(Q x_{n-1}\right)^{k-j} u_{j},
$$

where $x_{n}=u_{n}$ or v_{n}, and prove that

$$
\begin{aligned}
& \text { g.c.d. }\left(u_{n}, u_{k n} / u_{n}\right) \text { divides } k, \\
& \text { g.c.d. }\left(v_{n}, v_{k n} / v_{n}\right) \text { divides } k \text { if } k \text { is odd. }
\end{aligned}
$$

and that

PRELIMINARIES
(1) $\left(u_{n}, Q\right)=\left(v_{n}, Q\right)=1$
(2) $\left(u_{n}, u_{n-1}\right)=1$
(3) $D=\left(a^{n-1} b\right)^{2}$
(4) $P=a+b, Q=-a b$
(5) $v_{n}=u_{n+1}+Q u_{n-1}$
(6) $a u_{n}+Q u_{n-1}=a^{n}, b u_{n}+Q u_{n-1}=b^{n}$
(7) $a v_{n}+Q v_{n-1}^{n-1}=a^{n}(a-b), b v_{n}+Q v_{n-1}=-b^{n}(a-b)$
(8) $\quad v_{n}=P v_{n-1}+Q v_{n-2}$
(9) P even implies v_{n} even

