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A Golden Triangle is a triangle with two of its sides in the ratio (J>:1, 
where <f> is the Fibonacci Ratio, i.e., (J> = ^(1 + /J) ^ 1.618. Let AABC be a 
triangle whose sides are a,b, and o and let a/b = k > 1. Bicknell and Hoggatt 
[1] have shown that (1) a triangle with a side equal to b can be removed from 

AABC to leave a triangle similar to AABC if and only if k = cj), and (2) a tri-
angle similar to AABC can be removed from AABC to leave a triangle such that 
the ratios of the areas of AABC and the triangle remaining is k if and only if 
& = <(>. 

Unlike the Golden Rectangle whose adjacent sides are in the ratio cj>:l (or 
l:cj)), the Golden Triangle does not have a single shape. The diagonal of a Gol-
den Rectangle divides it into two Golden Triangles whose sides are in the ra-
tio 11cj):/cj)2 + 1. The most celebrated Golden Triangle, which can be found in 
the regular pentagon and regular decagon, has angles of 36° , 72° , and 72°  and 
sides in the ratio 1K p : ^ . In general, Bicknell and Hoggatt demonstrated that 
a Golden Triangle can be constructed with sides in the ratio l:cj):c7, where (J)"1 

< G < cj)2. Figure 1, adapted from their presentation, shows Golden Triangle 
CGH. Line GH is constructed to be of length r$ (r > 0) and line CG to be of 
length rcj)2. Line CG is twice divided in the Golden Section by points E and D, 
with CE = DG - v and ED = r/§. A Golden Triangle is formed whenever H is a 
point on the circle whose center is G and whose radius is EG. Line DH produces 
ADGH ~~ ACGH, and ACDH whose area is 1/cf) times the area of ACGH. In general, 
ACDH is not similar to ACGH. Nonetheless, ACDH is also a Golden Triangle, as 
CH/DH = <f> [ 1 ] . 

The present paper will explore the consequences of successively partition-
ing Golden Triangles. To begin, let us show that ACDH can be partitioned into 
two triangles, one similar to itself and the other having an area 1/cf) times 
its own area. If line DJ is drawn parallel to line GH, one can readily veri-
fy that ADHJ is similar to ACDH. (Alternatively, we could have chosen point 
J so that CH/CJ = cj). Lines DJ and GH would then be parallel, because CH/CJ = 
CG/CD.) We now need to show that the ratio of the area of ACDH to the area of 
ACDJ is cj). If we designate the area of ACGH by S, the area of ACDH is S/$ 
[1]. Since DJ is parallel to GH, ACDJ ~ ACGH. The ratio CG/CD = <|>, hence the 
area of ACDJ is S/$2. Accordingly, the ratio of ACDH to ACDJ is S/<$> divided 
by S/$2, or cj). Since 5/cJ) - 5/cj)2 = S/$3 , we find that the area of ADHJ is S/cJ)3. 

We can note several other relationships. Two additional Golden Triangles, 
ACDJ and ADHJ, are produced so that ACGH is partitioned into three mutually 
exclusive Golden Triangles. Moreover, ACDJ is congruent to ADGH. They are 
similar, as both are similar to ACGH and both have areas equal to 5/cJ)2. 

Moving beyond the Bicknell-Hoggatt demonstration and its immediate impli-
cations, we can show how successive partitions of Golden Triangles generate 
Fibonacci sequences. Let us repeat the above partitioning, subdividing all of 
the larger triangles produced in the previous partition. The partitions can 
be carried out in a manner analogous to the way in which ACDH was partitioned. 
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^ GH DH DG DJ HJ 

a = tDCH = tDHG = L.KDJ 

hCDJ = LDGH 

FIGURE 2. The General Golden Triangle 

For example, ACDJ can be split into two Golden Triangles by a line through 
point J parallel to ED. The resultant line is JE, which has a length equal to 
DH/$ and divides line CD in the Golden Section. As we proceed, the number of 
triangles and their areas are as follows: 

Partition 
Number 

(n) 

0 

1 

2 

3 

4 

5 

Fibonacci 
Number 
(F ) 

1 

1 

2 

3 

5 

Number 
of 

Triangles 

1 

2 

3 

5 

8 

13 

Area of Triangles 

S/<f>, Sl^1 

S/cf)2, S/cf)2, S/cf)3 

S/<$>\ S/cj)3, S/$\ S/cj)\ S/^ 

S/$k (5 t r i a n g l e s ) , S/($>5 (3 t r i ang les ) 
S/§5 (8 t r i a n g l e s ) , S/$6 (5 t r i angles ) 

Sl§n (Fn+l t r i a n g l e s ) , S/$n+1 (Fn t r i angles ) 
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The total number of triangles and the number of larger and smaller triangles 
increase in Fibonacci sequence. Figure 2 shows the five triangles produced by 
the third partition. The eight triangles produced by the fourth partition re-
sult from subdividing the three larger triangles in the figure. Because par-
titioning produced triangles whose areas, relative to the area of the parti-
tioned triangle, are l/(j> and l/(j)2, the pattern is perpetuated. 

S = Area kCGH 

ACEJ ~ kDHJ ~ kDHK 

bDEJ = kDGK 

FIGURE 2. The Partition of a Golden Triangle into 
Five Golden Triangles 

By a repetition of the earlier demonstrations, it can be seen that every 
triangle that results from the partitioning is similar to one of the two Gol-
den Triangles produced by the first partition (i.e., the partition effected by 
line DE), and that all triangles of the same area are congruent. Every trian-
gle has an area equal to S/fy'1, for some integer i. For triangles similar to 
ACGH9 i, is even, while for triangles similar to &CDH9 i is odd. Correspond-
ing sides of triangles with areas S/<^i and 5/(Ĵ  + 2 are in the ratio <\>:1. The 
total area of the larger triangles relative to the total area of the smaller 
is §Fn+1/Fn after the nth partition, and that ratio approaches (j)2 as n becomes 
large. 

Each partition illustrates the equation for powers of (J), i.e., 

(1) V*-Fn$+Fn_x. 

Dividing (1) through by cf)n, we have 
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which expresses the area of a unit Golden Triangle as the sum of the areas of 
partitioned triangles. For example, with n = 4, we have the situation before 
the fourth partition, shown, in Figure 2, where 

(3) 

Multiplying (3) by $** IS gives 

(4) 

a - 3S , 2S 
6 " IF + TV* 

3<|> + 2. 

Let us move from the general case to the special case where the two Golden 
Triangles formed by the first partition are similar to &CGE, and hence to one 
another. In that case, the triangles must be "Fibonacci Right Triangles," with 
sides in the ratio (J):c()3/2:(j)2. To demonstrate that, consider triangles CDE and 
DGE in Figure 1. From (1) we know LDCH = LDEG. If triangles CDH and CGH are 
similar, LCED must equal L.DGE because i-CED + LCEG. Since ACDE ~ M)GE and we 
have established equalities between two of their three angles, we must have 
LCDH = LGDH. A S LCDE and LGDE sum to 180° , both of those angles equal 90°  and 
line BE is an altitude. With LCEG = LCED + L.DEG and LDEG = LDCE, we have LCEG = 
L.CED + tDCE. In right triangle CDE, L.CED and L.DCE sum to 90° , hence i^CEG must 
be 90° . As Figure 1 was constructed with GE = rcj> and CG - r(j)2, applying the 
Pythagorean Theorem yields r2$h = v2§2 + CE2, and thus we find CE = P(J)3/2. 

The Fibonacci Right Triangle has been examined by a number of writers. 
Ghyka [2] identified it as one of the three most significant nonequilateral 
triangles. He noted that it was sometimes called the "Great Pyramid" triangle 
because its proportions are found in the Great Pyramid of Cheops, or the tri-
angle of Price, after W. A. Price, who proved that it is the only right trian-
gle whose sides are in geometric progression (i.e., if the sides of a triangle 
are 1, k9 and k2, k = /cjT is the only positive real solution that satisfies the 
Pythagorean equation 1 + k2 = kh). Hoggatt [3] noted that the altitude of a 
Fibonacci Right Triangle produced two Fibonacci Right Triangles that were 
"five parts congruent," that is, were similar and had two (but not three) sides 
of equal length. The Fibonacci Right Triangle is related to mean values, in 
that the harmonic, geometric, and arithmetic means of two positive numbers form 
a right triangle (the Fibonacci Right Triangle) if and only if those numbers 
are in the ratio (J)3:l [4]. In successive partitions of Fibonacci Right Tri-
angles, all line segments are in Fibonacci proportions, as they are all mul-
tiples of (j)i/2, with i an integer [5]. A multiply partitioned Fibonacci Right 
Triangle thus presents a striking geometric pattern. An example is given in 
Figure 3, which shows the 13 Fibonacci Right Triangles that result from five 
partitions of the original triangle. 

FIGURE 3. Five Partitions of a Fibonacci Right Triangle 
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In summary, successive partitions of a Golden Triangle provide a multi-
faceted geometric representation of the Fibonacci sequence. The triangles 
described above are Fibonacci in three different ways because they are in Fi-
bonacci proportions with regard to their numberss their areas, and the lengths 
of their sides. Golden Triangles not only embody the Fibonacci ratio, they 
also carry within them the ability to generate Fibonacci sequences. 
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