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In this paper we consider the Fibonacci sequence defined by
Fo=0,F, =1, and F, =F,_1 +F,_,, n 2> 2,

the k-ordered Fibonacci sequence {Gn(k)}, and the generalized k-ordered linear
recursive sequence {Rék) }, both of which will be defined.

First a new relation on the Fibonacci sequence will be proved and a well-
known relation on the Fibonacci sequence will be generalized for the k—ordered
Fibonacci sequence. Then an infinite set of positive integers will be found
such that no integer in this set is a divisor of any term in the sequence
{Rn(k)}. Finally, a result of Lieuwens [1] will be generalized for k-ordered
linear recursive sequences.

DEFINITION 1: TFor every k > 1, the k-ordered Fibonacci sequence {G,(Lk)} is
defined by G’o(k) = C—'§k) = o= k(lf)l =1, and

ko
¢® =% 6¢®, n >k
=1

(When k = 2, this sequence is essentially the Fibonacci sequence.)

DEFINITION 2: TFor every k > 1, the generalized k-ordered linear recursive
sequence {R() } is defined by RK = rRK) = ... = R =1, and

© _
RTL = Z a,l:Rr(l_)is n > k’
=1

where the a; are integers not all equal to O.

DEFINITION 3: 1f m # 0 is an integer, then for every k > 1, the length of
the period modulo m of {R,(lk) } is the least natural number p(m) such that there
exists an index 7y, and for n > ng,

Rfi)p = erk) (mod m).
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A sequence is called absolutely periodic modulo m if n, = 0.

REMARK: Every sequence {Rék)} is clearly periodic.

355

DEFINITION 4: The occurrence order of the natural number m > 1 in the se-
quence {Rék)}is the number r(m), for which m|Rék), but mfRék) if 0<n<r.

EXAMPLE 1: Let the a; = 1 and k = 3. Then we have the sequence
B®}r=1,1,1, 3,5, 9, 17, 31, 57, 105, 193, ... .

If m = 5, this sequence reduced modulo 5 becomes

0, 4, 2, 0, 0, 3, 1, 4, 3, 3, 0, 1, 4,

3, 1, 1, 1, 1, 1,

1, 1, 1, 3, 2, 1, 3,
0, Os 4’ 49 3, 2, 4, s | 1, 3, ...,

and we have

p(5) = 31, ny, = 0, r(5) = 4.

THEOREM 1: If {R,} is the sequence defined by

n
Ry =1, R, =3, JRn_js m > 0,
J=1
then for n 2 2,

(a) Rn = Fops

n
(b) 2:-Ej = Fons1-
7=0

PROOF: (a) For n = 2, 3, and 4, the theorem is easily established.
finite induction, and assuming that for < > 4,

R. = FZ"
then i v

Foie1) = Foteo = Foper ¥ Fop = Fpp + Fop g + Fyy

1]

7 i-1 7
32 GR;_j = 2 JRi-jr = ), (25 + DRy
Jj=1 J=1 Jg=1

7 T +1 T+1
2 Rig ¥ D IRsurg = Be ¥ Y dRen
=1 F=2 i=2

2Py + Fop = Fop_p = 3Fy; = Fygony = 3Ry - By

Using
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as required.
(b) Applying (a) above, we have

F2n+1 = Fz(n+1) - F2n = Rn+1 - Ry

n+1l

n n
= EJ‘R”H_J. =Y B = ZRj.
i=1 i=1 i=0
A well-known identity for Fibonacci numbers is

n
=S, s+ 1, 0o (1)

=2

An alternate form of (1), which we obtain by renaming F, = 1,
F, =1, F, = 2, and generalize as Theorem 2, is

n=-2
; ='22Fn_7_. +3, 1> 4. (2)
1=

THEOREM 2: If Gék) is as in Definition 1, then for all n 2= 2k,
k-2
(k) _ (%), (k) k(k + 1)
G 0 = igw i+ (k-1 ZG + (3)

Note that Gé” =F, as defined in (2) and hence (2) is a special case of (3).
PROOF: Let k 2 2 be fixed. If n = 2k, then using the definition of G;?
twice and performing the indicated sums, we have

S w L& LW
Z GokZg = '21 zlek—i—j
i1 -

k
aék) s + 26wk k- e+ k- e+

af (k)

k(k + 1)
2

k-2
., (k (%) k(k + 1
Z’LGZ(RZ’L.—]. + (7/ - l)Gk + ‘%.

(k) (®)

(k)_G =..._le=1_)

(Recall that G

Now suppose that (3) is true for m > 2k. Then
(k) (k) (k) _ (k) (k)
Gt 1 ZG -i+1 EG =G EG

_ iwmwz (k- l)ZG(k) k(k+ 1) +ZG(k)

7
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O ' w ) ®
7’Gm-i-1 * iz:lam_i k- 2)Gm—(k—l) + Gm'(k-l)

i=1
m~k
o 1@0;2}_74&;_&
=k

it

m+1-k

k-2

., (k) (%) k(k + 1)
2.1 + (k-1 3 ¢ + LT
=1 1=k

m+1) -1 -1 m+1)-1 2

which proves that (3) is true for n = m + 1 and hence for all n.
We now turn to the question of divisibiltiy of the terms of the sequence

{Rék)} by the natural number m and state the following theorem.

THEOREM 3: If‘{Rék)} is as in Definition 2, and if m if a natural number

such that
k
Yoa;)-1#0
=1
k
g.c.d. (m,(: a; - l)) =d> 1,
=1

then mYRék) for any n. That is, r(m) does not exist.

. <§> -

If g.c.d. (m, M) = d > 1, we show that for every =,

PROOF: Let

R =1 (mod ).

If n < k, then B = 1 and MR, since ¥ > 1.

n

Now, if we assume that the theorem is true for any k successive terms of
the sequence, we have

R = jm+1

k .
231“J1M +1

R
(k) .
Rn+k—l =Jk—lM+ 1.

Multiplying each of these equations successively by az, az_;5 ...5 a;, we ob-
tain
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akR;k) akjoM + ay

(k) .
A -1Fngs = Qo1 M+ ag

R(k)

Ay B ko1 T Qdp M F ags

and then adding, we have
k

k k
R _ (k) .
Fnsie = Zaiﬁm»k—i =M Y a g, + (Z ai) i
=1 i=1 .

=1

k
M(Zaijk_i + 1) +1,
=1
1)

which establishes that R,,% = 1 (mod ).

Now we assume that for some s,
m|Rék) .

Then d\Rs(k) and dIM and hence there exist integers j, r,, and r, such that

1
k) = 4 =
R, —r'ld—JM+1—1ﬂ2d+1,
which implies dll, a contradiction, and the proof is complete.

If g.c.d. (m, M) = 1, then it is not known whether, in general, there ex-
ists n such that man(k) .

Finally, we examine p(m), the length of the period of {R,fk)} modulo m.

Waddill[2] has shown that in the special case where Ry = 0, Ry = R, =1,
k=3,a =a, =a; =1, andm = q;*, q3*, ..., q3", q, prime, then

pm) = L.c.m. [p(g31), p(gd2)s «..s p(gIN]. (4)
Lieuwens [1] has shown that (4) holds for an arbitrary 2-ordered sequence.
We show that (4) is true for every k-ordered sequence.
THEOREM 4: Let {R,(zk)} be as in Definition 2 and let m > 1 be an arbitrary
integer, where
m=qlrqy* ... qur, q, prime,

then

p(m) = l.c.m. [p(qgl), p(qu)’ ey p(q;r)].
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PROOF: For every integer qfi, there exists an index #, such that for n > 7

Z

g

) L
ntdpqey = Bno (mod qfe), § =0, 1, 2,

Let n* = max(ng, Mop --+» M, ). Then for every integer t > 0, § 2 0,
(k) = p (k) ;
Rn*+jp(q:.‘i)+t - Rn*+t (mod C[_? )
for all Z. Hence, for 7 = 1, 2, say,
()

n*+jip(g +t

(k)
Rn*+j p(q‘z’z) +t

i

RE s (mod qf)

()
Rn

*+t

Hi

(mod g32),
Since g.c.d. (q,, qz) = 1, then the smallest integer, p, such that
(k) = p (&)
Rn*+p+t = Ryxhy (mod q;lqu)
occurs when

p = Leam [pet), plasH)]s

since p must be a multiple of both p(q;*) and p(qy?). The general case fol-
lows similarly.
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