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1. INTRODUCTION 

A simple graph G(p9n) with p vertices and n edges is graceful if there is 
a labeling £ of its vertices with distinct integers from the set 

{0, 1, 2, ..., n} 

so that the induced edge labeling £', defined by 

l'(uv) = \l(u) - l(v)I 

assigns each edge a different label. The problem of characterizing all grace-
ful graphs remains open (Golomb [3]), and in particular the Ringel-Kotzig-Rosa 
conjecture that all trees are graceful is still unproved after fifteen years. 
(For a summary of the status of this conjecture, see Bloom [2].) Other classes 
of graphs that are known to be graceful include complete bipartite graphs 
(Rosa [7]), wheels (Hoede & Kuiper [5]), and cycles on n vertices where n = 0 
or 3 (mod 4) (Hebbare [4]). 

A natural extension of the idea of a graceful graph is to have the induced 
edge labeling £' of G(p, n) be a bijection onto the first n terms of an arbi-
trary sequence of positive integers {a{}. In a recent paper, Koh, Lee, & Tan 
[6] chose the sequence {a^} to be the Fibonacci numbers {F^} where 

Fn = Fn- 1 + Fn- 2 I Fl = F2 = *• 

They defined a Fibonacci tvee to be a tree Tin + 1, ri) in which the vertices 
can be labeled with the first n+ 1 Fibonacci numbers so that the induced edge 
numbers will be the first n Fibonacci numbers. Koh, Lee, & Tan gave a system-
atic way to obtain all Fibonacci trees as subgraphs of a certain class of 
graphs and showed that the number of (labeled) Fibonacci trees on n+1 verti-
ces is equal to Fn . The only graphs other than trees which can be labeled in 
this fashion are certain unicyclic graphs where the cycle is of length three. 

In this paper, we modify the definition of Koh, Lee, & Tan so that the 
vertex labels of G(p9 n) are allowed to be distinct integers (not necessarily 
Fibonacci numbers) from the set {0, 1, 2, 3, 4, ..., Fn}. Formally, we make 
the following: 

*This work was supported by a grant from the Faculty Research Committee, 
University of Wisconsin-La Crosse. 
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Defini t ion 

A graph G(ps n) will be called Fibonacci graceful if there is a labeling 
I of its vertices with distinct integers from the set {0, 1, 25 3, 4, ...,F„} 
so that the induced edge labeling £', defined by V (uv) = \l(u) - £(u)|s is a 
bisection onto the set {Fls <F2, F3, . .'., Fn}. 

This definition gives rise to an extensive class of graphs that are Fibo-
nacci graceful; several examples appear in Figure 1. In Sections 2 and 3, we 
shall show how the cycle structure of Fibonacci graceful graphs is determined 
by the properties of the Fibonacci numbers. In Sections 4 and 5, we shall 
prove that several classes of graphs are Fibonacci graceful, including almost 
all trees. The general question of characterizing all Fibonacci graceful 
graphs will remain open. 

a. Cycles C5 and 06 b. Fans 

c.. A graph homeomorphic to Kh 

FIGURE 1. SOME FIBONACCI GRACEFUL GRAPHS 

2. SOME PROPERTIES OF FIBONACCI GRACEFUL GRAPHS 

From the definition of a Fibonacci graceful graph, it is apparent that the 
edge numbered Fn must have 0 and Fn as the vertex numbers of its endpoints. 
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Furthermore, any vertex adjacent to the vertex labeled 0 must be labeled with 
a Fibonacci number. The remaining vertices receive integer labels between 0 
and Fn9 but these need not be Fibonacci numbers. 

It is easy to see that if a graph is Fibonacci graceful, then it may have 
several distinct labelings. In fact, we have the standard "inverse node num-
bering" ([3], p. 27). 

Observation 1 : If {0 = a13 a2, a3, ...,a„ = Fn] is a set of vertex labels 
of a Fibonacci graceful graph, then changing each label a^ to Fn - ai also 
gives a Fibonacci graceful labeling of the graph. 

We also have the following theorem which demonstrates that the cycle struc-
ture of Fibonacci graceful graphs is dependent on Fibonacci identities. 

Theorem 1 

Let £(p, ri) be a graph with a Fibonacci graceful labeling and let Q be a 
cycle of length k in G. Then there exists a sequence {<5̂ -}. 1 with 6̂ - = ±1 
for all j = 1, 2, ..., k such that 

.7 = 1 

where {F^- }js:1 are the Fibonacci numbers for the edges in Q . 

Proof: Let a19 a2, . .., ak be the vertex labels for Q . Clearly, 

fc-i 
E <^+1 - <*j) + K - <**> = 0. 
J--1-

Since each difference <Zj- + 1-a:j equals either an edge label on C± or its nega-
tive, the theorem follows, m 

Corollary 1.1 

If graph G has a Fibonacci graceful labeling, then the edges of any cycle 
of length 3 in G must be numbered with 3 consecutive Fibonacci numbers (note 
that Fl9 F3, Fh is equivalent to F2s F39 F^). 

Corollary 1.2 

If graph G has a Fibonacci graceful labeling, then the edges of any cycle 
of length 4 in G must be numbered with a sequence of the form Fi , Fi+19 Fi+39 
F. 

Corollary 1 .3 

If graph G has a Fibonacci graceful labeling, then the edges of any cycle 
of length 5 must be numbered with either a sequence of the form F±, Fi + 19 
Fi+3> Fi+5> Fi + 6 o r F19 F29 Fi9 Fi + 19 Fi + 2 . 
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CoroTlary 1.k 

Let graph G have a Fibonacci graceful numbering. Suppose that in cycle Ci 
of length k the three largest edge labels are consecutive Fibonacci numbers, 
^fc_23 Fik-i> F-ik- Then for the remaining labels on Ci we have 

k-3 

J = I 

Proof: Both 6^_2 and 6^^_x must be opposite in sign to &ik for, other-
wise, the sum of Fik and either of Fik_2 or Fik_x would exceed the sum of all 
the remaining edge labels on Ci , violating Theorem 1. [See Identity (2) be-
low] . m 

For convenience, we list some of the basic Fibonacci identities that are 
useful later: 

(1) Fn = Fn_x + Fn_2; F± = F2 = 1. 

(2) F1 + F2 + F3 + ••• + Fn_2 = F„ - 1. 

(3) Fl+F3+F5+ -•• +FZn_1 = F2n. 

(4) F 2 + F^ + F 6 + • • • + F2n = F2n - 1. 

A variation of Identities (3) and (4) may be obtained by once omitting a pair 
of consecutive Fibonacci numbers: 

(5) Fn - 1 > Fn_2 + Fn_h + Fn_6 +... + *V + 2 + ^ + ^ _ 3 + ^ _ 5 + ..., 
(J > 3) . 

The next result, stated as a lemma, is useful both in seeking Fibonacci 
graceful labelings and in developing a theory of the structure of Fibonacci 
graceful graphs. 

L emma 1 

Suppose G(p9 n) has a Fibonacci graceful labeling and C is a cycle of G. 

a. If Fk is the largest Fibonacci number appearing as an edge label of C9 
then Fk_1 also appears on C. In particular, the edge labeled 

*n- i mus t 
be in every cycle that contains the edge labeled Fn. 

b. The cycle C whose largest edge number is Fk must contain either the 
edge labeled Fk_2 or Fk_3* 

Proof: 

a. By Theorem 1, some linear combination of the edge numbers on C must sum 
to 0. By Identity (2): 
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Fx + F2 + F3 + ... + Fk_2 = Fk - 1 < Fk. 

Thus, Fk_1 must appear as an edge label of C. 

b. Since Fk - Fk_x = F^_2, some combination of the remaining labels on C 
must equal Fk_2. But, since Fx + F 2 + **# + ^£-4 ^^/c-2' there must be an 
edge labeled Fk_3 unless there is one labeled with Fk_2 itself, m 

We also have the following theorem, which corresponds to a well-known re-
sult for graceful graphs [3, p. 26], 

Theorem 2 

If £(p, n) is Eulerian and Fibonacci graceful, then n = 0 or 2 (mod 3). 

Proof: If G is Eulerian, then it can be decomposed into edge-disjoint 
cycles. By Theorem 1, the sum of the edge numbers around any cycle must be 
even and, hence, 

F + F + F + m ' ' + F = F - 1 

must also be even. Thus, Fn + 2 must be odd, and this occurs if and only if 
n = 0 or 2 (mod 3). m 

3. FORBIDDEN SUBGRAPHS 

One possible way to characterize Fibonacci graceful graphs would be to 
find a complete list of graphs such that G would be Fibonacci graceful if and 
only if it did not contain a subgraph isomorphic to one on this list. This 
approach seems difficult because gracefulness is a global rather than a local 
condition. Nevertheless, the following theorems do limit the structure of 
Fibonacci graceful graphs considerably. 

Theorem 3 

If G(p, n) contains a 3-edge-connected subgraph, then G is not Fibonacci 
graceful. 

Proof: Suppose G(p9 n) is Fibonacci graceful, and G r is a 3-edge connected 
subgraph. Let Fk be the largest edge number appearing in Gr, and let vx

 a nd ^2 
be the endpoints of that edge. Since GT is 3-edge connected, there is a path 
joining v1 and V2 which does not contain either the edge numbered Fk or the 
edge numbered Fk_1. This path, together with the edge (i?l5 v2) forms a cycle 
which contains the edge labeled Fk , but not the one labeled Fk_1. This vio-
lates Lemma 1. m 

It is interesting to note that a graph G which is not Fibonacci graceful 
may have homeomorphic copies thich are. For example, although Kh is not Fibo-
nacci graceful by Theorem 3, the graph in Figure 1(c), a homeomorphic copy of 
Kit 3 is Fibonacci graceful. Perhaps a more striking example is the nonplanar 
graph shown in Figure 2, which is Fibonacci graceful even though the complete 
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graph K5 and the complete bipartite graph K3i3 are not. The graph in Figure 2 
contains a subgraph homeomorphic to K3i3. A consequence of the next theorem 
is that it is impossible for a nonplanar graph to contain a subgraph which is 
homeomorphic to K5 and have a Fibonacci graceful labeling. 

17724 

6768 

2674 

2585 

6766 

(Z3j3 is homeomorphic with a subgraph containing the vertices 
labeled 24, 17711, 0 and 13, 46368, 1.) 

FIGURE 2. A NONPLANAR FIBONACCI GRACEFUL GRAPH 

Theorem 4 

If there is a pair of vertices joined by 4 edge-disjoint paths in G(p, n) , 
then G is not Fibonacci graceful. 

Proof: Let v1 and V2 be two vertices of G joined by 4 edge-disjoint paths 
P1SP2!> ?3s and Pk. Suppose G has a Fibonacci graceful labeling. With no loss 
of generality, assume that Fk is the largest Fibonacci number on these paths 
and that it lies on an edge of Pla By Lemma 1(a), Fk_± must also lie on Pl9 
since otherwise there are cycles containing edge Fk , but not Fk_1» Addition-
ally, either Fk_2 or Fk.3 must also be an edge label on P19 for if they were 
on other paths, say P2 and/or P3, then paths Px and Pk would form a cycle vio-
lating Lemma 1(b). 

Suppose that it is Fk_2 that appears as an edge label on P±, Then Corol-
lary 1.4 permits us to ignore Fk , Fk_l9 and Fk_2 and tells us that some linear 
combination of the remaining Fibonacci numbers on any cycle must sum to 0. 
Repeat this process, beginning with the largest of the remaining edge labels, 
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to discard or ignore the presence of three consecutive edge numbers on any of 
the paths. This repetition cannot discard all of the edge numbers along any 
path, for then vertices V1 and V2 would necessarily have the same vertex label. 
Thus, the process terminates at a time where Fj is the largest remaining edge 
label and Fj , Fj_l9 and Fj_3 appear on some path, say P2, but Fj-2 appears on 
another path, say Fh. Then there is a cycle, P3 and Fh for example, on which 
Fj_2 ^s t n e largest Fibonacci number, but Fj_3 does not appear, violating Lem-
ma 1. 

4. CLASSES OF FIBONACCI GRACEFUL GRAPHS 

We begin with easy observations that any Fibonacci graceful graph may be 
embedded in larger ones. 

Observation 2: Let £(p, ri) have a Fibonacci graceful labeling. Then the 
graph 6?1(p+ 1, n+ 1) formed from G by attaching a vertex V of degree 1 at the 
vertex labeled 0 can be given a Fibonacci graceful labeling by labeling v with 
Fn+1-

Observation 3: Let G(p, n) have a Fibonacci graceful labeling. Then the 
graph G2(p+l, n+2) formed from G by attaching a vertex v of degree 2 to the 
vertices labeled 0 and Fn can be given a Fibonacci graceful labeling by num-
bering v with Fn + 2. 

Theorem 5 

The cycle Gn is Fibonacci graceful if and only if n E 0 or 2 (mod 3). 

Proof: Since Cn is Eulerian, it is not Fibonacci graceful for n E 1 (mod 
3) by Theorem 3. 

If n E 0 (mod 3) , the following labeling sequence on the vertices is a 
Fibonacci graceful labeling: 

0, Fn , Fn_2, Fn-i> •••> Pn_3j-9 Fn_3j_29 Fn-3j-i> •••' ̂ 6' Fh» ̂ 5» ^3' ^i-

If n E 2 (mod 3), the following numbering sequence on the vertices is a Fibo-
nacci graceful labeling: 

0 , Fn , Fn_2> Fn_ly . . . , Fn_3j, Fn-3j-2* Fn-3j-l> ' • • ' ^5> -^3> ^ M ^ 1 • • 

Theorem 6 

A maximal outerplanar graph G with at least four vertices is a Fibonacci 
graceful graph if and only if it has exactly two vertices of degree 2. 

Proof: Let G be a maximal outerplanar graph with more than two vertices 
of degree 2. Then G must contain a subgraph isomorphic to the graph shown in 
Figure 3. Since there are 4 edge-disjoint paths between vertices V1 and v2 in 
this grapl>, G cannot be Fibonacci graceful by Theorem 4. 
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FIGURE 3. A FORBIDDEN SUBGRAPH 

We next use induction to show that a maximal outerplanar graph G(p9 2p - 3) 
with exactly two vertices of degree 2 has a Fibonacci graceful labeling. 
Moreover, this labeling can be given so that the 0 label appears on either 
vertex of degree 2, say vQ9 and that F2p_3 may be the label of either neighbor 
of VQ. Since all the maximal outerplanar graphs with two vertices of degree 2 
can be generated by repeatedly adjoining a new vertex of degree 2 to a previ-
ous vertex of degree 2 and one of its neighbors ([1], p. 607), Observation 3 
will complete the proof. 

To begin the induction and to illustrate the labeling, Figure 4 shows all 
the maximal outerplanar graphs with exactly two vertices of degree 2 for p = 
4, 5, and 6. Assume the inductive hypothesis is valid for p = k and consider 
a maximal outerplanar graph £(p+l, 2p - 1) with exactly two vertices of degree 
2. Let VQ be a vertex of degree 2 in G with neighbors v1 and V2. When vQ is 
removed, one of its neighbors, say i?l5 will become a vertex of degree 2 in 
G - vQ. By induction, G - vQ may be given a vertex labeling £ such that 

l(v{) = 0 and l(v2) = F2p_3. 

By Observation 3, G can be made Fibonacci graceful by labeling V0 with F2p-i* 
By Observation 1, the transformation F2p_1 - a^ applied to the vertex labels 
gives G a Fibonacci graceful labeling £x with 

l1(v0) = 0 and i1(v1) =F2p_1. 

To show that G has a second labeling £2 in which 

^"l\V 2) ~ £ 2p - 1 ' 

apply the transformation F2p ~ di to the vertex labels of G - VQ. This gives 
an induced edge labeling £2; to G for which 

i'2(voVl) = Fzp_2 and £2'0Vi>
 =F2P-i 

with all other edge labels unchanged, m 
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3 

5 13 8 

a. p = 4 b. p = 5 

24 21 31 34 

# » * 32 29 21 23 26 34 

• - # • # . ^ 
26 34 29 21 34 21 C. p = 6 

FIGURE 4. FIBONACCI GRACEFUL LABELINGS OF MAXIMAL OUTERPLANAR GRAPHS 
WITH SIX OR FEWER VERTICES AND EXACTLY TWO VERTICES OF DEGREE 2 

5. FIBONACCI GRACEFUL TREES 

In this section we will present an algorithm that will enable one to find 
a Fibonacci graceful labeling for nearly all trees. The trees which do not 
have such a labeling are easily characterized. Except for K1 and K2, which 
are trivially labeled9 any tree T(p, n) with five or fewer vertices cannot be 
Fibonacci graceful since with n ^ 4 edges there are not enough distinct inte-
gers between 0 and Fn to label the p = n+ 1 vertices of T« It is also appar-
ent that KliYl is not Fibonacci graceful for n > 2. That this is so follows 
from the fact that all the edges have a vertex in common and if the remaining 
vertices are distinctly labeled, there cannot be two edges with the label 1, 
The only other tree that is not Fibonacci graceful is shown in Figure 5. 

> — < 

FIGURE 5. A TREE THAT IS NOT FIBONACCI GRACEFUL 
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It is generally easy to provide a labeling for any other tree, especially 
one with a large number of vertices, because for n large, Fn is considerably 
larger then n + 1 and there are many distinct integers from which to choose 
the vertex labels. In Figure 6 we show a Fibonacci graceful labeling for the 
remaining trees with six vertices. 

3 

0 5 4 1 3 2 0 4 2 

0 
#-

5 3 

FIGURE 6. THE FIBONACCI GRACEFUL TREES T(6, 5) 

The trees in Figure 6 are examples of a class of trees called "caterpil-
lars"—trees which become paths when all of their endpoints are removed. (It 
is known that all caterpillars are graceful trees [8].) The length of a cat-
erpillar will be the number of edges in the remaining path. 

Theorem 7 

All trees T(n+l, n) with n ^ 6, except for KliTi3 are Fibonacci graceful. 

Proof: We divide the proof into cases, and provide a labeling £ for each 
case. The cases are: 

a. caterpillars of length 1; 

b. caterpillars of length 2 or more; 

c. noncaterpillars. 

We begin x̂ ith caterpillars of length 1. Since T has at least six edges, 
there is a vertex y0 of T with degree 4 or more. Let Vj. denote the neighbor 
of Vo which Is not an endpoint. Let £ label vQ with 0; V1 with Fn ; the k + 1 
> 3 endpoints adjacent to V0 with 1, Fn_l9 Fn_2J . .., Fn_^; and the endpoints 
adjacent to v1 with Fn ~ Fn-ji_l9 Fn -rc-fc- 2» 3, bn 2, Fn 1. 
Figure 7 gives an example of the results of this procedure. Clearly the algo-
rithm gives a proper edge labeling; thus, it remains only to verify that the 
vertex labels are distinct. Note that, if V^ is a neighbor of v0 and Vj is a 
neighbor of Vls then Sl(Vj) > 1(V<L) since for n > 6 and 2 < H n - 3 we have: 

iU(u,)} - F„ - n-k -1 > Fn- cU(y7-)L 
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18 

-•19 
21 

13 ̂  ^ 2 0 

FIGURE 7. A FIBONACCI GRACEFUL CATERPILLAR OF LENGTH 1 

For a caterpillar T of length 2 or more, choose a longest path in T and 
call its vertices VQ9 V19 V29 , . . 9 Vk. Denote the endpoints adjacent to Vi by 
vn> vn* •••» vij> t = 1, 2, ..., L We consider two subcases depending on 
the degree of v1. If V1 is of degree 2, define I as follows. Let 

Hv0) = 0, l(v±) = Fn9 l(v2) = Fn - 1. 

Then label the neighbors of v2 by 

£ ( v 2 1 ) = £ ( y 2 ) - F n _ 1 5 £ ( y 2 2 ) = £(z;2) - F n _ 2 , . . . 5 Hv2j) = £ ( y 2 ) - Fn_.9 

a n d , f i n a l l y , 

Proceed to define for the v + 1 neighbors of v3, 

Hv31) = l(v3) +Fn_j_2, Z(v32) = l{v3) +Fn_d_39 

l(v3r) = l(v3) + Fn_._T_1, 

ending with 
Kvh) = l(v3) + Fn. 3 -v-2' 

Notice that each neighbor of V3 has been distinctly labeled with positive in-
tegers strictly between Z(v2) and max{£(i;3), ^(v2i)}- For the neighbors of Vi+ 
label each vertex with 

&(̂ i+) ~ (the appropriate Fibonacci number) . 

Again each of these will be distinctly labeled with positive integers between 
&(i?3) and m±n{i(v^) , %>(v3i)}. Continue in this manner, adding the continuing 
sequence of Fibonacci numbers to the neighbors of Vs,v7, v$9 ... and subtract-
ing them from the neighbors of V6, VQ9 V1Q9 .... An example of the resulting 
labels is shown in Figure 8(a). 

If vertex v1 is of degree more than 2, let 

l(v0) = 0 and £(t;i) = Fn 

as before. For the neighbors of V\9 define 
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*(*>n) = Fn - 1, Hvlz) = l(v{) - Fn_13 Z(v13) = i(v{) «-2 3 

Hvld) = i(v±) 

ending with 

-n-o-2 s 

£(z;2) = £0^) • n - 3 - 2• 

Proceed to label the neighbors of V2 by adding the appropriate sequence of 
Fibonacci numbers to i(v2). In this instance, the vertex labels for these 
vertices will lie between l{v11) and &( 2̂)> the two largest vertex labels ap-
pearing on the neighbors of v±. From here, proceed in a fashion analogous to 
that above. An example of such a caterpillar is shown in Figure 8(b). 

49 
m 

45 
m 

55 41 F, 46 43 44 

b. 

232 89 144 188 186 

0 F1S 233 F10 178 F7 181 F6 183 F3 185 P2 

FIGURE 8. TWO LABELED CATERPILLARS OF LENGTH 4 

184 

Finally, we consider a tree T which is not a caterpillar. Remove the two 
endpoints of a longest path in T to form a subtree Tr that is not a path. Tr 

has either one or two centers, both lying on some longest path Pr in TT. Se-
lect one of the centers, denoted v0, and root Tr at vQ. If ̂ 0 is a vertex of 
degree k ^ 2, denote the neighbors of y0 by i?n, U12J ..»9 Vlk in such a way 
that v1± and i?lk lie on Pr and i;lfe is the other center of J" if there are two 
centers. Denote the "half" of Pr containing v0 and V1± by PLf (the "left half") 
and the section containing v0 and vlk by PRf (the "right half"). (Thus, the 
vertices at the first level are labeled from left to right.) Also denote the 
k subtrees rooted at vll9 V12, . ..» Vlk by T1, T2, . . • , ̂ 5 respectively. Next 
call the vertices at a distance of 2 from v0 by'i;21, ̂ 22? •••» vij in such a 
way that v21 is on PR' and V2j is on PL'; that is, name the vertices from right 
to left. Proceed to name the vertices at distance 3, V3l9 V32, ..., V3r again 
from right to left. Continue from right to left at each level until all the 
vertices of Tr have been named. Note that there will be at least two vertices 
at each distance or level (except perhaps at the final level, where there may 
be only a single vertex on PRf) , since vQ was a center. Also, there must be a 
level with at least three vertices, since Tr is not a path. 
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We define the Fibonacci graceful labeling I on 2" as follows: 

Ui>0) = 0; 

&(^ii) = Fn, l(v12) = Fn_l9 ..., i(vlk) = Fn_k_1; 

^(v21) = l{vlk) - Fn_k_2; 

&(v22) = ^(parent vertex of V-22) - Fn-k-3* •••; 

that is, for any subsequent vertex in Tr
9 its label will be the difference 

between the label of its parent vertex and the next smaller Fibonacci number. 
Note that the edges of Tf receive the labels Fn9 Fn_19 „..9 F3 in decreasing 
order from left to right on the first level, and from right to left on all 
subsequent levels. To extend £ to the original tree T9 label each of the two 
endpoints which were removed by £ (its neighbor) - 1. Figure 9 presents two 
applications of this algorithm. 

553 552 554 516 513 220 212 143 110 

FIGURE 9. TREES WITH FIBONACCI GRACEFUL LABELINGS 

It is clear that this procedure will properly label all the edges, so it 
remains only to observe that the vertex labels are distinct and nonnegative. 
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First, we note that within any of the rooted subtrees Tis t = 1, . .., k9 the 
vertex labels decrease as the distance from V0 increases. Finally, we claim 
that for i < j, every vertex label in Ti exceeds those in Tj . Note that the 
vertex labels in T1 all equal 

Fn - (a sum of Fibonacci numbers), 

where the terms in this sum include at most 

•^n-3* ^n-5* ^ n - 7 ' •••» £n-r» ^ - p - 3 5 -tn_r_59 ..., 

for some i5, since at each level there is at least one edge in PR , and at some 
level there is at least some other edge not on P. Thus, by Identity (5), the 
smallest vertex number in T1 is greater than 

Fn ~ (Fn -2 ~ 1) *> Fn-l' 

Thus, every vertex number in T1 exceeds any vertex number in T2• A similar 
argument will show that if v e T2 (̂  Tk), then 

Fn.2 < Hv2) < Fn_19 

and that if v e Tk 9 then 

0 < l(v) < Fn_k. 

This concludes the proof of the theorem8 a 

6. SUMMARY AND CONCLUSION 

In this paper, we have extended the idea of graceful graphs to numberings 
where the vertex labels are distinct integers but the edge labels are members 
of the Fibonacci sequence. We investigated the cycle structure of Fibonacci 
graceful graphs and used this to find forbidden subgraphs. We found infinite 
classes of Fibonacci gracegul graphs, including almost all trees. It is in-
teresting to note that, if we had required the edge numbers of Tin + 1, n) to 
come from the set {F2y F33 . . . , Fn + 1] in order to eliminate the problem with 
duplicate vertex labels in K1}US then all trees could be labeled eadily. This 
is due to the large size of Fn relative to ns which leaves many possible dis-
tinct integers available for the vertex labels. Thus, in a certain sense, the 
Ringel-Kotzig-Rosa conjecture is a limiting case for this type of tree label-
ing problem, since to produce the edge labels {l, 2, 3, „ . . , n} it is required 
to use every integer in {0, 1, 2, ..-, n}. 

For the Fibonacci graceful graphs, the problem remains to characterize all 
of them, perhaps by forbidden subgraphs, although this appears difficult in 
view of Observations 2 and 3. Further classes of Fibonacci graceful graphs 
can certainly be discovered. For example, we conjecture that all unicyclic 
graphs with at least one endpoint are Fibonacci graceful graphs. 
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[continued from page 173] 

Since the Newton iterates always fulfill the linear equations which belong 
to the system of nonlinear equations that is to be solved (with the excep-
tion, of course, of the starting value), the conclusion follows at once. 
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