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For any positive integer m9 the Fibonacci sequence is clearly periodic 
modulo m. Many moduli 777, characterized in [1], have the property that every 
residue modulo 777 occurs in each period. (Indeed, 8 and 11 are the smallest 
moduli which do not have this property.) However, moduli m with the property 
that all m residues modulo m appear in one period the some nwnhev of times 
occur very infrequently, as the following theorem from [2] shows. 

Theorem 1 

If all 77? residues appear in one period of the Fibonacci sequence modulo m 
the same number of times, then w is a power of 5. 

The converse of this theorem is also true [3]. Since (see [4]) for k > 0 
the Fibonacci sequence modulo 5k has period 4 • 5k, it follows that if 777 > 1 
is a power of 5, and (un) is the Fibonacci sequence, then every residue modu-
lo 77? appears exactly four times in each sequence 

Us ? Us + 1> Us+2* •••» u
s + km-l' 

This result can be strengthened considerably. 

Theorem 2 

Denote the Fibonacci sequence by (un) . If m > 1 is a power of 5, then 
every residue modulo m appears exactly once in each sequence 

Us 9 Us+^y US + Q , ..., ^ 6 + 4(777 - 1 ) • 

Proof: Write m = 5k, and denote the greatest integer function by [ ]. The 
Fibonacci sequence u1 - 1, u2 = 1* u3 = 2, ... satisfies the well-known form-
ula 

un = (((1 + A)2-1)" - ((1 - /5)2"1)n)/y5. 

Apply the binomial expansion to this formula to obtain 

where all terms after ( j5^ vanish and I = [ (n - l)/2]. Fix s9 and let 
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Sk = {0, 1, ..., 5k - 1}. Then, for n = s + 4a, a e Sk, we have 

« „ - (2-l)-l(2-l)-((?) + ( 3 ) 5 + •••) 

and it is obvious that un represents every residue modulo 5k if and only if 

*-- <2-)-((7) + (5)5+ -..) 
represents every residue modulo 5k

 9 since s is fixed and (2"1)8"1 is a unit 
modulo 5k. Thus, we shall only consider tn and prove the theorem by induc-
tion on k. 

If k = 1, then a e {0, 1, 2, 3, 4} and tn = 3 + 4a (mod 5), since 2"1* = 1 
(mod 5). Thus, the theorem is true for k = 1. Assume the theorem is true for 
k9 and consider k + 1. For a e 5 H l , write a = & + c?5k, where b e Sk and e'e 
{0, 1, 2, 3, 4}. Then, 

t„ = (2-1)«(2-1)-5*((8 + 4 & + ̂  + (S+ 4 \ + 4C5")5 + •••) 

= (2"1)^((S +
1
4*) + (S +

3^)5 +•••) + (2-1)lti4c5fc (mod 5*+1), 

since 

( 2 - V 5 * E 1 (mod 5fe+1) 

and 
/s 4- 4fc +"4e5k\C7 _ As + 4&\cj , , c H u r . ̂  , 
V 2j + 1 ) 5 =\2j + l)5 (m0d 5 ) f o r ^ U 

[To prove the last congruence, note first that it is equivalent to 

( • • « ; * • = > - . 3 ( » M * + * ) 5 ' - M - d 5 ' ) . 

Then, observe that the power of 5 dividing (2j + 1) ! is exactly j - 1 for j = 
1, 2, and is 

£ [(2j + l)/5*] < X (2j +• l)/5* = (2j + l)/4 < j - 1 for j > 3. 
a - 1 ii= 1 

Hence, 5J"1/(2j + 1)! is integral at 5, and this implies the congruence.] 

Let us now consider the congruence modulo 5k. We obtain 
*» = ( 2 - 1 ) ^ ( ( S +

1
4 i ) + ( S +

3
4 i ) 5 + •••) (mod 5*). 

and, by the induction hypothesis, tn represents the complete residue system 
modulo 5k

9 for n=s+bb9beSk. 

If we hold b fixed in Sk and let c run through the set {0, 1,2, 3, 4}, we 
obtain 

tn = ( l - 1 ) ^ 8 +
1

4&) + (S + 4&)s.+ •••) + (2-1)^4c5k (mod 5k + 1 ) , 

290 /"Aug. 



EQUIPROBABILITY IN THE FIBONACCI SEQUENCE 

which are all distinct residues modulo 5k + 1 since (2"1)4Z)4^ takes on distinct 
values modulo 5. Since the five tn are all congruent to 

( 2 - v * ( ( e + 4fc) + (e + 4*)5 + ...j (mod5fe)j 

the induction is complete. 
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