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INTRODUCTION
Consider the equation:
F, = ct ()

where F, denotes the mth Fibonacci number, and ¢*> 1. Without loss of gener-
ality, we may require that ¢ be prime. The unique solution for ¢ = 2, namely
(m, ¢) = (12, 12), was given by J. H. E. Cohn [2], and by 0. Wyler [11]. The
unique solution for ¢ = 3, namely (m, ¢) = (6, 2), was given by H. London and
R. Finkelstein [5] and by J. C. Lagarias and D. P. Weisser [4]. A. Petho [6]
showed that (#*) has only finitely many solutions with ¢ > 1, where m,c, t all
vary. In fact, he shows that all solutions of (#) can be effectively deter-
mined; that is, there is an effectively computable bound B such that all solu-
tions of (*) have

max(Iml, lel, t) < B. ()

Similar results were obtained independently by C. L. Stewart [10], see, also,
T. N. Shorey and C. L. Stewart [9]. The proofs of these results use lower
estimates on linear forms in the logarithms of algebraic numbers due to A.
Baker [1], and the bounds obtained for B in (%##*) are astronomical. 1In [7],
A. Petho claims that (¥) has no solutions for ¢ = 5.

In [8], we showed that if m = m(¢) is the least natural number for which
(#*) holds for given ¢, then m is odd. In this paper, our main result, which
we obtained by elementary methods, is that m must be prime. If (%) has solu-
tions for ¢ > 5, and if ¢ is a prime divisor of F,, one would therefore have
z2(qt) = z2(q) = m, where 2(q) denotes the Fibonacci entry point of g. This re-
quirement casts doubt on the existence of such solutions. For the sake of
convenience, we occasionally write F(m) instead of F,.

PREL IMINARIES

(1) If ¢t is a given prime, ¢ 2 5, and m = m(¢) is the least natural number
such that (#) holds, then m is odd.

(2) Fy|Fy

(3 Es B = F,p
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(4) (F;, Fyp IF;) |k

(5) Fy =1

6) 57|k iff 57|F,

(7) If p is an odd prime, then p? ) F(p’k) /F(p? k)

(8) 1f xy = z", n is odd, and (.’L‘, y) =1, then x = Y/Ln, Yy = Un; where (“9 U)
=1 and w = z.

(9) If xy = 3", n is odd, p is prime, (x, y) =p, and p?}y, then = = p" 'u",
y = pv", where (u, v) = (p, v) = 1.

(10) 1If 2%|F,, where k >3, then 3% 2%72|m
1, if p = #1 (mod 10),
(11) If p is prime, then pifb_ef where ¢, = 0, if p = 5,
-1, otherwise.
(12) F; < Fyp if j > 2 and k > 2

Remarks: All but (1) and (4) are elementary and/or well known. (1) is the
Corollary to Theorem 1 in [8], and (4) is Lemma 16 in [3].

THE MAIN RESULTS

Theorem 1

If ¢ is a given prime, ¢ 2 5, and m = m(t) is the least natural number
such that F,, = ¢t > 1, then m is prime.

Proof: Let
r
m = H p.ei’
=1

where the p, are primes and py <p, < ... <p, if » > 1. Furthermore, assume
m is composite, so that p, <m. (1) implies 2 <p,. Let

d

(Flp,)> Fm)IF(p,)).

(4) implies d[(m/pr). If d

1, then since hypothesis implies

F(p,) = F(m)/F(p,) = c?®,
(8) and (12) imply F(p,) = at with 1 < g < ¢, contradicting the minimality of
m. 1If 4> 1, then pi’d for some ¢ such that 1 < Z < r. If £ < p, then Lemma

1, which is proved below, implies p; = 2,a contradiction. If Z = r, then (11)

implies p, =5, sor =1 or 2. If r =2, thenm = 3952, But F; = 2, so the
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hypothesis and (2) imply 2[ct, hence Zt‘ct, and ZtIFm. Now (10) implies that
3% Zt'2[3a5b, so that ¢ = 2, a contradiction. If » = 1, thenm = 5%, which is

impossible by Lemma 3, which is proved below.
Lemma 1

If p, q are primes such that p < g and p|F(q%) for some k, then p = 2 and
qg = 3.

Proof: The hypothesis, (11), and (3) imply plF&, where d = (g%, p - ép).
(5) implies d > 1, so that d = g7 for some j such that 1 < § < k. Therefore,
g7 (o - ep), so that ¢ < g7 <p + 1. But the hypothesis implies g > p + 1.
Therefore, g = p + 1, so that p = 2 and ¢ = 3.

Lemma 2
If F(Sj) = SJU;, where SJ’UJ, then F(Sj_l) = SJ_IU;_I, where SX’UJ_l.

Proof: The hypothesis and (2) imply F(57° 1) % F(59)/F(57°1) = SJU;. (6)
and (7) dimply

(F(577Y, F(5HFGITY) = 5,
so that (9) implies F(57°1) = SJ_IU;_l, and (6) implies 5/} Uiy
Lemma 3
F(579) # ct for t > 1.
Proof: If F(Sj) = ¢t, then (6) implies SJd = ¢t, where 5}’d. Now (8) im-
plies 5 = yt, d = Uf,so thatF%Sj) = 5ju;. Applying Lemma 2 j- 2 times, one

obtains F(5%) = 5205. But F(5%)/5% = 3001, so that UE = 3001, a contradiction,

since 3001 is prime.
REFERENCES

1. A. Baker. "A Sharpening of the Bounds for Linear Forms in Logarithms II."
Acta Arith. 24 (1973):33-36.

2. J. H. E. Cohn. "Square Fibonacci Numbers, Etc.'
2, no. 2 (1964):109-13.

3. J. H. Halton. "On the Divisibility Properties of Fibonacci Numbers." The
Fibonacci Quarterly 4, no. 3 (1966):217-40.

1

The Fibonacci Quarterly

4. J. C. Lagarias & D. P. Weisser. "Fibonacci and Lucas Cubes." The Fibo-
nacet Quarterly 19 (1981):39-43.
5. H. London & R. Finkelstein. ''On Fibonacci and Lucas Numbers Which Are

Perfect Powers." The Fibonacci Quarterly 7 (1969):476-81.

1983] 217



10.

11.

218

ON FIBONACC! NUMBERS WHICH ARE POWERS: |1

A. Petho. '"Perfect Powers in Linear Second-Order Recurrences." J. Num-
ber Theory 15 (1982):5-13.

A. Petho. 'Perfect Powers in Second-Order Recurrences.'" (To appear.)
N. Robbins. '"On Fibonacci Numbers Which Are Powers." The Fibonacci

Quarterly 16 (1978):515-17. ,
T.N. Shorey & C. L. Stewart. "On the Diophantine Equation ax Ptaxty+ey’=d

and Pure Powers in Recurrence Sequences.'" (To appear in Math. Scand.)
C. L. Stewart. ''On Some Diophantine Equations and Related Linear Recur-
rence Sequences.'" Seminar Delange-Pisot-Poitou, 1981.

0. Wyler. Amer. Math. Monthly 71 (1964):221-22.

€040¢

[Aug.



