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1. INTRODUCTION 

By a poset we mean a partially ordered set. If G9 H are posets, then 
their cardinal power GH is defined by Birkhoff (see [1], p. 55) as a set 

of all order-preserving mappings of the poset H into the poset G with an 
ordering defined as follows. 

For /, g E GH there holds f < g if and only if f(x) < g(x) for every 

x E H. 

If G is a lattice, then £^ is usually called a function lattice. (It 

is easy to prove that if G is a lattice, or modular lattice, or distribu-
tive one, then so is GH (see [1], p. 56). 

Let A be a poset and let a, b E A with a< &. If no ̂  E A exists such 

that a < x < &, then & is said to be a successor of the element a. Let 

n(a) denote the number of all the successors of the element a E A. Fur-

ther, let o(A) denote the number of all the components of the poset A9 

i.e., the number of its maximal continuous subsets. 

Finally, if X is a set, then \x\ is its cardinal number. 

Now we can introduce the following definition. 

Def ini tion: Let A ^ cj) be a finite poset. Put 

(a) n(A) = £ n(a) (1.1) 
a EA 

(1.2) 

- |4 + cGl) (1.3) 

The number d(A) is called the density of the poset A9 the number v(A) 

is called the cyclomatic number of the poset A. 
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It is evident that, for a finite poset A9 n(A) is equal to the number 
of edges in the Hasse diagram of the poset A, thus v(A) is the cyclomatic 
number of the mentioned Hasse diagram in the sense of graph theory. 

Now our aim is to determine the density and the cyclomatic number of 

functional lattices GH, where G9 E are finite chains. 

2. PARTITIONS AND COMPOSITIONS 

The symbols N9 NQ9 will always denote, respectively, the positive inte-

gers, the nonnegative integers. 

Let k9 n9 s E N* By a partition of n into k summands, we mean, as usual, 
a fc-tuple Cl -I , CI O , B O O , CZt, such that each a^ E N* a1 ^ a2 ^ . . . ^ ak, and 

a1 + ••• + ak = n. (2.1) 

Let P(n9 k) denote the set of all the partitions of the number n into 
k summands. Let P(n9 k9 s) denote the set of those partitions of n into k 
summands, in which the summands are not greater than the number s9 i.e., 

such that s ̂  a1 ̂  a2 ̂  ... ̂  ak ̂  1. 

By a composition of the number n into k summands, we mean an ordered 
k-tuple (a19 ..«,

 aO> with a^ E N9 satisfying (2.1). Let C(n9 k) denote 
the set of all these compositions. 

Finally, let D(n9 k) denote the set of all the compositions of the 
number n into k summands a^ E NQ [so that C(n9 k) C D(n9 k)]. 

It is easy to determine the number of elements of the sets P(n9 k), 
P(n9 k9 s)9 C(n9 k) 9 and D(n9 k)—see, e.g., [2], [3], and [6]. 

Theorem 1: For k9 n9 s E N9 

(a) 

(b) 

(c ) 

(d) 
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Defini tion: Define the binary relation p on the set D(n9 k) as follows: 

If a, g ED(n9 k), a = (ax, ..., ak), g = (b±, ..., bk), then ap3 if 

and only if i G {2, 3, . .., k} exists such that 

bi_1
 = &i-1 + 1J b>i = CLI - 1, and bj = â  for remaining j. 

Further, put, for a ED(n9 k), 

r(a) = {g G/?(n, fc); apg}. 

Remark: Thus, for a = (a19 ..., ak) E D(n9 k) , the elements from I* (a) are 
all the compositions of the form 

(a1, ...5 a^_x + 1, at - 1, ai+1, ..., afc). 

From the definitions of the set D(n9 k) and the relation p, it follows 
that |r(a)| is equal to the number of nonzero summands a^9 i = 2, ..., k9 

in a. 

Defini tion: For i E NQ9 we denote 

Z^Mn, fc) = {aED(n9 k) ; |r(a)| = i}. (2.6) 

Theorem 2: For k, n E N9 i E NQ9 

\DUn9 k)\ = ('MP ^ x ) . (2.7) (")C i ')• 
Proof: Let a = (al9 ..., afe) E D'L{n9 k). Therefore, according to the 

above Remark, there are only i numbers that are nonzeros from all the sum-
mands a2, ..., ak9 ax being arbitrary. If now ax = j, then by (2.4) there 

exist precisely 

compositions of the required form. Hence, 

i»'<- *>i • C ; O K " : ! ) • ( ? : ? ) • • • • • ( * : ! ) ] - ( * ; ')(;)• 
Remark: It is evident that 

Dz(n9 k) ^ (j) if and only if £ < min[fc - 1, n] . 
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Let Y denote the set of all nonincreasing sequences (a1$ a1$ ...., an9 

.— .) of nonnegative integers in which there are only finitely many a^ ± 05 
i.e.5 such that 

i = l 

We define the ordering < on the set Y by: 

(a15 a2, . ..) ̂  (b15 b2s • ••) if and only if a^ < b^ for every £GN. 

Then the poset Y is evidently a distributive lattice. It is the so-called 
Young lattice. For more details on its properties see, e.g., [4] and [5]. 

Identifying (ax, ..., ak)_EP(n, k) with (al9 . . . , ak, 0, 0, ...) E J, 

we henceforth consider the partitions as elements of the Young lattice. 

The elements with a height n in Y are evidently all the partitions of 
the number n. [The element with the height 0 is obviously the sequence 

(0, 0, ...)]• 

Defini tion: For a E J, the principal ideal Y(a) is given by 

1(a) = {g E Y; g < a}. 

Def in ? t ion: Let a denote the covering relation on the lattice 7, i.e., 

for a, g E J, 

aag if and only if 3 Is a successor of the element a. 

The next result follows immediately from the definition of the Young 

lattice. 

Theorem 3: Let a, g E 7, a = (a1? a2, . . . ) , g = (2^, Z?2, . . . ) . Then aag 

if and only if there exists i E N such that bi = a^ + 1, and aj = £j for 

Q E N, j ^ i. 

Definition: Let a = (a19 a2, ...) E J, let r be the number ai E a, with 

a{ + 0. Then canonical mapping / : J(a) -> Z?(z», 1 + ax) is defined as fol-

lows: 

For g = (fc1, fc2, ...) E J(a), the Image /(g) is the composition 
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for which o^ is the number of values of j for which bj = ax + 1 - -£ in the 

r-tuple (b19 ...» br). 

Remark: If 3 = (b19 . .., br, 0, 0, . . .) E 7(a), then evidently 0 < bi < at 

for all i = 1, . . ., r. The image of the sequence 3 under the canonical 

mapping / is the composition (cl9 . .., £1 + a ) with the following proper-

ties: 

c1 is the number of integers ax in (b19 . .., fcP), c2 is the number of 

values of j for which bj = a1 ~ 1 in (i>l5 . .., £p), etc., until <21 + a is 

the number of zeros in (&1, . .., 2?r) . 

Theorem 4: Let a = (ax, . . ., ar9 0, 0, ...) EI, with ax = • • • = ar= k >0. 
Then 

(7(a), a) £ [P(r, fc + 1), p]. (2.8) 

Proof: Let /: 7(a) -> P(r, fe + 1) be the canonical mapping. Then / is 

evidently a bisection. Let 3> y E 7(a). If 3 = (& , i> , . ..) and if gay, 

then by Theorem 3, y = (bl9 . .., bt + 1, &i+1j • ••) for some i. Denote b^ 
by t. Then there is in the sequence y one less t and one more t + 1 than 
in the sequence g. Combining this fact with the definition of the rela-

tion p on D(P, k + 1), we have 

3ay if and only if f(3)p/(y). (2.9) 

Thus, the canonical mapping / is an isomorphism from (7(a), a) on 

[Z)(p, k + 1), p]. 

3. DENSITY AND CYCLQMATIC NUMBER OF FUNCTION LATTICES 

Let P, Q be arbitrary posets. If P = cj)5 Q + <\>9 then PQ = (J). If § = (J), 

then P^ = {(j)}, P being arbitrary. Henceforth, we shall consider only such 

functional lattices PQ, where P £ ty £ Q. 

The basic properties of the functional lattices PQ, where P, Q are 
finite chains, are described in [6]. Namely, there holds 

Theorem 5: Let p, q E N9 let P, g be chains such that \p\ = p, \Q\ = g. 
Then 

(a) |P«| = ( P + ^ _ ') (3-1) 
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(b) For i E Nos the number of elements in PQ with height i5 is equal to 

\P(q + is q$ p) | . 

(c) PQ = 1(a) , where a = (a±s . . ., aq5 0$ 0S . . . ) , a1 = • • • = aq = p - 1. 

Proof: The assertion (a) is trivial. The proof of the assertion (b) 

is in [6]s p. 9. The assertion (c) results from the following! Put 

P = {0 < 1 < ••• < p - 1}, § = {1 < 2 < ••• < q}. 

The isomorphism F : P® -> Y(a) is given by 

F(f) = (/(<?), /(? - 1), ..., f(D, 05 03 . . . ) , 

for each f E PQ. 

Lemma: For fc, n E Ns 

t (m - e r) (a) 

(b) 

Proof: (a) The assertion (3.2) is well known. 

(b) In [8], Hagen states without proofs many combinatorial 

identities. As the 17th there is stated: 

A a + hi ip - id\(q + id\ = a(p + ff - rci) + bnq/p + <A . 
^ (p _ id)(q + id)\n - i/\ i / ?(p + q) (p - id) \ n ) ' 

The first very complicated proof of formula (3.4) was given by Jensen 

in 1902. The simplest of the known proofs is given in [9]. 

Substituting a = 05 b = 1, p = ns q = k> d = 0 into (3.4), we obtain 

T M n \(k\ = kn (k + n) ff0kn\n - i)\i) (k + n)kn\ n ) 9 

by which formula (3.3) is proved. 

Theorem 6: Let p, q E N9 let P5 S be chains such that \P\ = p , \Q\ = q. 

Then 
n(PQ) = , 

p + q - 1 \ g 

Proof: If p = 1, then \PQ\ = 1 so that n(P5) = 0 and (3.5) is evi-

dently valid. Thus let p > 1. By Theorem 5(c), we have PQ = T(a) , where 
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a = (a1,...,a(?, 0, 0, ...)» ax = • • • = aq = p - 1. Let /: J (a) -> P(p, <?) 

be the canonical mapping. For g EI(a), ft(S) = |r[/(g)]| by Theorem 4. 

Combining this fact with (2.7) and (3.3), we obtain 

3GJ(a) i=0 

Remark: Combining (3.1), (3.5), and the proof of Theorem 6, we have 

.^j^-i^Vl^fT) 
„(P«) = ? ( p - D ( P + * - i ) _ «p -1 ) . |P«| = £ ^ ? y p : i) . (3.6) 

p + q- - IV ? / p + q - I ' ' fri \i/\ % ) K ' 
Now it is easy to determine the density and also the cyclomatic number 

of the functional lattice P5. 

Theorem 1: Let p, q G N, let P, <2 be chains such that \P\ = p, |Q| = q. 
Then 

(a) d(P«) -Ig-Z-IL. (3.7) 

(b) v(P«) = J (i - 1)(|)(P : *) (3.8) 

Proof: (a) The assertion (3.7) follows from (1.2) and (3.6). 

(b) If A is a connected poset, then c(A) = 1. Combining this 

fact with (1.3), (3.6), (3.1), and (3.2), we obtain 

= i<?)(V)-i(?)(V) + 1 

Remark: Combining (3.6), (3.8), and (3.1), we obtain 

v<p«) - £ « - »(?)(" : ') - ^ f ^ T ' ) - ( P T ' ) " -
(3.9) 

Let p, (7, p, s E i!7, and let P, g, P, 5 be chains such that |p| = p, 

|<3| = 9, |P| = r, \S\ = s. By (3.7) and (3.8), 

if v = q + 1, s = p - 1, then d(PQ) = d(P5), v(P^) = v(Rs) . (3.10) 
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But in [7] we have proved that for p > 1, 

PQ ~ Rs i f and only if p = p , q=s or r=q+l5 s = p - 1. 

(3c10) i s now ev iden t . 

REFERENCES 

1. G. Birkhoff. Lattice Theory. Third (New) Edition. New York, 1967. 

2. L. Carlitz. "Restricted Compositions." The Fibonacci Quarterly 14, 
No. 3 (1976)1254-64. 

3. M. Hall, Jr. Combinatorial Theory. Toronto & London: Waltham, 1967. 

4. R. P. Stanley. ffThe Fibonacci Lattice." The Fibonacci Quarterly 13, 
No. 3 (1975):215-32. 

5. G. Kreweras. "Sur une classe de problemes de denombrement lies au 
treillis des partitions des entiers." Cahiers du EURO 6 (196-5) : 3-103. 

6. E. Fuchs. "On Partitions with Limited Summands." Arch. Math. 15 
(1979):1-12. 

7. E. Fuchs. "On the ̂ -Category of Finite Chains." Zeitschrift fur Math-
ematische Logik und Grundlagen der Mathematik 28 (1982):63-65. 

8. J. G. Hagen. Synopsis der hoheren Mathematik, I. Band, Berlin, 1891. 

9. H. W. Gould & J. Kaucky. "Evaluation of Some Binomial Summations." 
J. Comb. Theory 1 (1966)^233-47. 

•<>•<>• 

1984] 49 


