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1. SHIFTED INTEGER SEQUENCES 

It was noticed by Benford [1] that the first nonzero digit in certain sets 
of real numbers is not uniformly distributed among the integers 1 through 9; in 
fact, the probability that this first, leftmost digit equals 3 is equal to 

log10(l + 3"1). 

He extended the analysis to the frequency of digits beyond the first for num-
bers obeying a particular probability law: the logarithmic distribution. This 
phenomenon of nonuniform distribution of digits has generated a considerable 
mathematical literature, particularly for the first digit, and has been shown 
to apply to the Fibonacci numbers [2], [3], [4], 

The purpose of this paper is to examine the probabilistic structure of the 
entire set of digits from certain integer sequences. The Fibonacci sequence 
provides one example. 

The essential results are that, for a large class of probability laws, the 
digits are not equiprobable and their values are correlated; but in the limit, 
as the ordinal number of the digits goes to infinity, the digit values approach 
equiprobability and their correlation goes to zero. However, under certain con-
ditions, this limiting behavior does not occur; rather, the nonuniform behavior 
persists for all digits. In particular, subsequences of the Fibonacci sequence 
exist which exhibit "persistent Benford" behavior. 

Let 0) = {an} be a sequence of positive integers. Define a shifted sequence 
0) of rationals an E Ub = [b"1

9 1], for integer base b ^ 2, by 

— TV Zn — CZnU •v(an) 

where 
v(an) = [logban] + 1 

is the number of digits in the b-ad±c representation of an, with [•] the greatest 
integer function. 

The asymptotic distribution function (a.d.f.) g t Ub -> E1 is defined for co 
as usual by 

= liffl AOb^UJLL&l (1) 

when this limit exists. Here A is the counting function which records the num-
ber among the first N terms of S that lie in the interval [b"1

9 x). Note that 
g is left-continuous. 

Theorem 1: If an = an, a > 1 and not a rational power of b, then the a.d.f. g 
of {an} exists and 

g(x) = 1 + log,a?. (2) 

1984] 105 



DIGIT FUNCTIONS OF INTEGER SEQUENCES 

Proof: Since an < x if and only if 1 + logban < 1 + loĝ a?, 

, , , . A([0, 1 + log^x); 21/; {1 + logban}) 
g(x) = lim 5 2 

if the limit exists. But, since a is not a rational power of b9 

{1 + log^a^} = {1 + n^}, E, irrational, 

is uniformly distributed mod 1, thus yielding the theorem. • 

It can be shown that (2) is also the a.d.f. of the shifted sequence {Fn} of 
Fibonacci numbers Fy, because 

1 (l + J5\n + 1 

r5\ 2 ) " 75 

(see also [5]). In fact, this a.d.f. holds for any integer sequence defined by 
a recurrence relation. 

An example of an important sequence of integers that does not have an a.d.f. 
is the sequence of primes. It was shown by Wintner [6] that the limit (1) does 
not exist in this case. However, the relative logarithmic density does exist 
[7]. 

Theorem 2: If {an} has a continuous a.d.f. g9 then for every Riemann-integrable 
function f i Ub -> E1, 

1 N fl 

1±mjfl2f(^n) = / f(x)dg(x). 'b~ 

Proof: Immediate from Theorem 7.2 of [8]. • 

Theorem 2 provides us the means to apply the standard facts of probability 
theory to the study of digit functions of integer sequences. 

2. DIGIT FUNCTIONS AND ASYMPTOTIC EQUIPROBABILITY 

Let the digit function dk be defined such that dk(x) equals the k digit 
of x so that 

x = J£ dk(x)b~k . 
Define k=1 

T[$(k)] = {x E Ub\dk(x) = g(fc)} C Ub9 

where &(k) E Zb = {0, ..., b - 1}. Then, the joint probability pg that 

dki(x) = BCki), ..., dks(x) = B(fca) 

is given by the Lebesgue-Stieltjes integral 

pg [B(^), ..., B(fea)] = f Inmi)] ... ITmK)]dg(x), (3) 
*^b 

where IG is the indicator function of the set G C Ub . Allowing some abuse of 
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notation, the same symbol p will be used for all such probability functions, 
regardless of the dimensionality of the domain. Also, when no confusion will 
result, the argument k of (3 will be suppressed. 

When g is the logarithmic distribution (2), 

Vg[Wj, .... B(ke)J - £ £ ...£ logj 
6(1) = 1 B(2) = o B(k.-1) = 0 

1 + 
£B(m)2>-

7 7 7 = L 

(4) 

where the sums over B(?Cj) for J = 1, . .., s - 1 are to be excluded. 
The relative frequency of digit values will be derived by setting s = 1 in 

(3) and (4). The succeeding section uses s = 2 to infer dependence properties 
between digits. 

Definition 1: The a.d.f. 
and only if 

lim prg(fe)] 
fc + oo y 

is asymptotically equipvobable with respect to Z? if 

b'1 for all 3 E ZL. (5) 

It can be shown that g is asymptotically equiprobable if a density function 
/ exists for g. Furthermore, for a sufficiently smooth a.d.f., such as the 
logarithmic distribution (2) , the rate of approach can also be displayed, as in 
Theorem 3. When / exists, p and p« will be used interchangeably to denote the 
function defined in (3), as suits the occasion, with the symbol f being reserved 
for the density function and g for the a.d.f. 

Theorem 3: if fecz[b"1
9 1], then 

where 

p [B(fc)] = b'1 + h($)b~k + 0(b~2k) for all 

fc(B) M^-1)^- /(i"1)]. 

Proof: Let <?• [$(&)] be the £-adic rationals defined by 

with 

r[3(fe)] U [?f [B(fc)], <7jB(fc)] + £"*] 
i = 1 

l, fc = l, 
M 

(i - l ) ^ " 2 , k > l. 

(6) 

(7) 

Then, writing 17. for <7.[g(fc)], 

pf tew] = r m(k)] / ( • 

x)d% = £ / f(x)dx 
i = 1Jq 

M 

E 
i = 1 

= E -5-b-fc [/(?,) + /(?,: + £"fe)] + 0(b-2k), 

where the last equality follows from the trapezoidal rule of integration [9]. 
The two ordinate sums in this last equation can be converted into integrals, 
with remainders, by use of the Euler-Maclaurin formula [10]. For k > 1, 
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; ,2 JKHi) 2b < 
^ = 1 ^ = 1 

£ 4*"*/(^) = ^E^^Vf*"1 + & - iwk+1 + &-k] 
£ = 1 

/̂/w* + n a r ( ! " i ) [ f ( 1 ) " f<6"1)1-2fc-v 
For fc = 1, qi = 32?"1 s and the same result is obtained. Calculating a similar 
expression for the term involving f(q. + 2Tfe) and using the fact that 

I 1 f{x)dx = 1 

y i e l d t h e theorem, a 

Using Theorem 3 , t he expected v a l u e of t h e kth d i g i t of x i s 

E(dk) = £ - = - i + 2 T k [ / ( D - / X Z r 1 ) ] ^ ^ + 0 ( 2 T 2 * ) , 

which is approximately (b - l)/2 for large fc (as expected!). 
To denote the special case of the density function corresponding to the 

logarithmic distribution (applicable to the Fibonacci sequence), v will be used 
in place of f; that is, 

d logftfo) _ 1 
r(x) dx x In b' 

which has been termed the "reciprocal density function"[11]. Theorem 3 applies 
and gives 

pp[&(k)] = b'1 + h($)b~k + 0(b~2k). 

Theorem 4: 
- k • 

[000] = LiogJi + V ' 
£ = 1 N Hi I 

where qi i s def ined by (6) and M by ( 7 ) . 

Proof: 

•qi+b" etc p,[B(fe)] = flIimk)]r(x)dx = £ r -
• , / - In b 

M i 

= Z i ^ l n ^ £ + * > - i ^ . ) ] f 
£ = 1 

which yields the theorem, H 

For the special case b = 10, the relative frequencies, obtained from Theo-
rem 4, of values of the first four digits are given in the accompanying table. 
The last digit in each entry has been rounded and not truncated. Columns 1 and 
2 contain Benford's original results. For subsequent digits, the rapid approach 
of these data to b'1 is readily apparent when plotted as in Figure 1. 

Figure 2 provides samples of the convergence of the relative frequency of 
second-digit values for the Fibonacci sequence to their theoretical limits (cf. 
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column 2 of the table). The fraction of the first N Fibonacci numbers with 
second digit equal to 3 is plotted against N for five values of j3. 

Probability that Digit k Equals 3 for the Logarithmic Distribution 
(Base 10) 

T\ 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 

-
.30103 
.17609 
.12494 
.09691 
.07918 
.06695 
.05799 
.05115 
.04576 

2 

.11968 

.11389 

.10882 

.10433 

.10031 

.09668 

.09337 

.09035 

.08757 

.08500 

3 

.10178 

.10138 

.10097 

.10057 

.10018 

.09979 

.09940 

.09902 

.09864 

.09827 

4 

.10018 

.10014 

.10010 

.10006 

.10002 

.09998 

.09994 

.09990 

.09986 

.09982 

0.35r 

0.30 

•3-0.25 

£ 0.20 

§f0.l5 

§ 0.10 

0.05 

Fig. 1. Approach of Relative Frequency of Digits 
to b'1. Logarithmic Distribution with b = 10 
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Fig. 2. Convergence of Relative Frequencies to Theoretical 
Values for Second Digit of Fibonacci Numbers 

There exist integer sequences for which asymptotic equiprobability does not 
hold (for the a.d.f.). For example, BenfordTs first-digit frequencies can be 
retained for all subsequent digits for certain subsequences of the Fibonacci 
sequence, and, in the next theorem, conditions are given for the existence of 
integer sequences which possess specified digit properties, a reversal of the 
approach used thus far. 

Theorem 5: For each k = 1, 2, ..., let tk be a function from the Cartesian 
product of Zb with itself k times to [0, 1 ] and satisfying the three consistency 
conditions: 

t k [ B ( l ) , . . . , B ( f e ) ]>0 ; £ £,[3(1)] = 1; 
and e(1)ez> 

E ^ + i [ 3 ( i ) , • •> e(fc), &<fe + x ) ] - - ^ t e a ) , ..., B(fe)]. 
BCfe + D e z j 

Then, for any integer sequence GO with GO dense in Ub , there exists a subsequence 
T with a.d.f. g such that p = tfc. 

Proof: By BillingsleyTs theorem [12] (a consequence of Kolmogorov*s exis-
tence theorem), the three conditions on t\ insure the existence of a probabil-
ity measure y on the Borel sets of Ub such that, for each k, 

y(T[B(i)] n ••• n T[B(fc)]) = tJB(i), ..., B(fc)] 
for all 3(1), ..., B(fc) in Z^. 
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Then define a distribution g : Ub •+ [0, 1] by g(x) = \ilb~1, x) . By Theorem 
4.3 of [8], there exists a sequence a in Ub with a.d.f. go - ga 

Let a = {sj}. Since a) is dense in £/& * there exists a subsequence T of w 
with T = {VJ} such that î- = Sj + A^, where Aj > 0 and lim Aj = 0. 

Since Aj > 0, J'"*°°  

^ ( [ Z r 1 , a?); tf; T) ̂ ( [ Z T 1 , a?); /!/; 3 ) . (8) 

For e > 0, choose NQ such that Aj < e for j > 21? 0 . Then 

A([b-\ xe); N; {sj}^) ^ ( [ Z f 1 , x); ff; {i>j}*0)» (9) 

where aje = min{b_15 # - e}. 
By (1), there exists k^ such that 

Adb-1, x); N; isj}^) 
N — = ga(x) + kN(x), 

where lim kN(x) = 0 for every x £ Uh. 
N + oo iV 

Using (8) and ( 9 ) : 
A([b-\ x); N; {vd}; ) 

go(x - e) - ga(x) + kN (x - e) < 2 ^ ( x ) < kN(x). 

L e t t i n g N go t o °° g i v e s 

go(x - e) - go(x) < gT (x) - gQ (x) < 0 . 

Since ga is continuous from the left and £ is arbitrary, gT = ga = g, and the 
theorem is established. • . . . 

Definition 2: An integer sequence co is said to be absolutely equiprobable with 
respect to b if and only if 

l i m Atmmu*;*) (<6 - 1)_1- fe - \ f o r a l l e € 

Corollary 5,1: For every £ ̂  2S there exists a subsequence of the Fibonacci 
numbers that is absolutely equiprobable with respect to b. 

Proof: Let tfe[B(l), ..., 3(fc)] = (i - l)'1*?'*"1"1. Then, by Theorem 5, there 
exists a subsequence T of {Fn} with a.d.f. g such that p = tfc for all k. 

Since 

A(T[$(k)]; N; T ) = E ^ ( [ ^ > ^ + b~k); N; T ) , 
then 

l taMBWlLilJ) = E ^((? + 6-*) _ g(qi)] = p (e(fc)) 

= E ' P , (6(1). • - . , 6(fe - 1), B(fe)) 

= £ '**(&(!) . •••> 3(fc - 1 ) , B(*)) 

= 6_ 1S'*fc-i(B(l). •••» 3(/c - 1)), 
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where E' denotes the sum over all B(j) for j <"k. Then, k - 2 applications of 
the third consistency condition of Theorem 5, followed by use of the second con-
dition, yields the corollary. The case k = 1 is trivial. Thus, 

•N+ao N 

as required. 

Definition 3: An integer sequence a) is said to be a persistent Benfovd sequence 
with respect to b if and only if 

(logjl + B " 1 ^ ) ) , B(fc) > o 
lim A(T[M)]; N; 0)) 

N 0, B(fc) = 0, 
for all k > 1 and all B(k) G Z,. 

Corollary 5.Z: For every 2? ̂  2, there exists a subsequence of the Fibonacci 
numbers that is persistent Benford with respect to b. 

Proof: A calculation similar to that contained in the proof of Corollary 
5.1 serves here and, in fact, for any tk defined as the product of univariate 
density functions. • 

3. WEAK DEPENDENCE OF DIGIT FUNCTIONS 

Dependence between digit functions is demonstrated by showing that they are 
correlated random variables. 

First, an expression for the bivariate density function is derived. 

Theorem 6: If f E C2[Z?"1, 1] and k2 > k19 then 

pf [&(&!>, B(fc2)] « ZT^IBtfi)] + Me(fc2)]fr"*2"1 

+ .£[&(&!>, $(k2)]b-ki-k> + 0(b-m±n{2ki+k*'2k>}) 

where the function h is defined in Theorem 3 and 

[/'(D - fib-1)] 

with B19 52 Bernoulli polynomials and the prime denoting differentiation. 

Proof: Let ui(^>(k1), &(k2)) be the b-ad±c rationals defined by 
ML 

rieo^)] n ne(fc2)] = U lu^a^* nk2)), M B C ^ ) , B(fc2)) + £~*2], 
where M is defined in (7), L = b*2'*1'1 and i = (ix - 1)L + i2. Then, writing 
u^ for wi(B(fc1), B(fe )), ^ r ^ + 2 ^ 
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Using the trapezoidal rule, 

M L -h-k2 

H = l i2=l 

Substituting ut = qi±+ (i2~ l)b~kl + 1 + $(k2)b~k2 in this expression and apply-
ing the Euler-Maclaurin formula, as in the proof of Theorem 3, to the sums over 
i2 gives 

, M fl^+b-*'- M 

P ^ B ^ i ) , $(k2)] = ±Z / f(x)dx +-+£ Z b-k*+1 

i-l - 1 •Wtj i1 = 1 

x lAfll(~w+ Bl\ b—))mq^+ b °"f(qi)] 

\\-ir-) + BA—i—)) 2 

Recognizing the univariate expression for digit k1 in the first term and again 
applying the Euler-Maclaurin formula to each of the four sums inherent in the 
second term yields 

imo, e<*2>] -£P/[*<*!>] + ̂  r^«[Bl(l^) + Bl(^4^)] 

x LH-A—) - M-IT-).F(1) - ̂  )] 

+ ^ K ^ ^ ) _ B 2 ( ^ ) ] [ / , ( 1 ) _ r ( & . 1 ) ] ] 

+ 2F 

[W^^)-^)]^^)-^-^ 
+ ^ - y — K — T — ) " BA—F~)\[f,r(1) - f,r(h ) ] 

+ 0(Z)"2fel"fe2)s 

which reduces t o t h e theorem. • 

Corollary 6A: I f fE C2{b~x , 1] and £ 2 > &x, then 

P^tec^), B(fe2)j = b~2 + o(z?-fci). 
Theorem 7: If f E C2^'1, 1] and £2 > kls then 
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where 

of = [{b - 1 }
xf + l)J[f'(D - fib-1) - (/(l) - fib'1))2]. 

Proof: Write 
b-l b-1 

c o v / ( ^ i , dki) = £ E 3 (^1)3^2)^ (3 (^1) . -B(fc2)) 
3 ( f e i ) - l S ( fc 2 ) - l 

- Pr(3(fc1))p/(B(fc2))]. 
Using the univariate and bivariate expressions of Theorems 3 and 6, respectively: 

*-l *=.! l/23(fc2) + 1 \ 
covf(dk dkz) =b-k^k> E E e(fci)B(fc2)T( s i) 

3(fci)-l fl(fc2)«l ^ \ ^ / 

x f—^ " l ) [ [ / f ( D " fib'1)] - [/(l) - /(ZT1)]2] 

+ o(b"min{2/Cl+^25 2k2>)< 

Then, performing the two indicated sums yields the theorem. • 

Corollary 7.1: If f E C2[b"1
9 1] and k2 > k±9 then 

& Hm+«cov.f (^*i * ^ 2 ) = °-

A second indicator of the weakening of dependence for large-digit numbers 
exists because it can be shown that the sequence {dk} of digit functions is 
*-mixing in the sense of Blum, Hanson, and Koopmans [13] when f G C1\b~'L, 1] 
and 1/f is bounded above. 

The research described in this paper was carried out by the Jet Propulsion 
Laboratory, California Institute of Technology, under contract with the National 
Aeronautics and Space Administration. 
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