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Let {u,} be a Lucas sequence of the first kind defined by the second-order
recursion relation )

Upypp = QUpyy + Dy,

where g and b are integers and u, = 0, u; = 1. By the Binet formulas

u, = (@" - 8" /(e ~ B)»
where o and B are roots of the characteristic polynomial

x? - ax - b.
Let

D= (a=-B)? =a’+4b

be the discriminant of the characteristic polynomial of {u,}. We shall prove
the following theorem which demonstrates that the quotients of specified terms
of the second-order recurrence {u,} satisfy a higher-order relation.

Theorem 1: Consider the sequence
W, Y, ., = lunr/und, -y

where k is a fixed positive integer, of # 0, and o/B is not a root of unity.
Then {w,} satisfies a k™ -order linear integral recursion relation. Further,
the order k is minimal.

Along the lines of this theorem, Selmer [1] has shown how one can form a
higher-order linear recurrence consisting of the term-wise products of two
other linear recurrences. In particular, let {s,} be an mtP-order and {t,} be
a pth-order linear integral recurrence with the associated polynomials s(x) and
t(x), respectively. Let a;, 2 = 1,2, ..., m, and Bi» J = 1,2, ..., p, be the
roots of the polynomials s(x) and t(x), respectively, and assume that each poly-
nomial has no repeated roots. Then, the sequence

{hn} = {snta}

satisfies a linear integral recurrence of order at most mp, whose characteris-
tic polynomial % (x) has roots consisting of the »r distinct elements of the set
{@iﬁj}, where 1 < ¢ <mand 1 < j < p. Note that the coefficients of h(x) are
integral because they are symmetric in the conjugate algebraic integers ozBj-.
However, {h,} may satisfy a recursion relation of order lower than r.

Selmer's proof depends on the fact that the recurrences {s,} and {tn} can
be expressed in terms of their characteristic roots by means of the formulas

m p
8p = 2 Yi0Ls tn = 2 6;B]. (D
i=1 i=1
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This follows from the fact that the sequences {a}}, 1<i<m, and {6?}, 1€ 7<p,
satisfy the same recursion relations as {s,} and {¢,}, respectively. Further,
a linear combination of sequences satisfying the same linear recursion relation
also satisfies that linear recursion relation. By means of Cramer's rule, one
can then solve (1) for s,, 1<n<m, and ¢,, 1<n<p, in terms of Cx‘?, 1<€7<m,
and 6;, 1< j<p, respectively. The fact that the roots ;s 1S$2<m, and By,
1</j<p, are distinct guarantees unique solutions in terms of o and E;. Now,

m p
hYL = Snt?’l =<Z Y‘LOL’T:)(Z 67 B;L> = '\/7' SJ(Q’LBJ)H’
i=1 Jj=1 1<z
1

m
P

VAN

z
J

VAWAS

and each o;B; is a root of the polynomial hx).
Before proving our main result, we will need the following lemma. A proof
of this lemma is given by Willett [2].

Lemma 1: Consider the sequence {s,}. We introduce the determinant

Sy St41 v Siyp-a
8 1 Sit2 St
DI‘ (t) =
=3
Sivr-1 Yt fror-2

Then {s,} satisfies a recursion relation of minimal order k if and only if

D, (0) # 0
and
D.(0) =0 for » > k.

We are now ready for the proof of the main result. The first part of the
proof will show that {w,} satisfies a k™ _order linear integral recursion rela-
tion. The second part of the proof will establish the minimality of k. The
simple proof of minimality was suggested by Professor Ernst S. Selmer.

Proof of Theorem 1: First, we claim that u, # 0 for n » | and {w,} is well-
defined. If y, = 0, then o” - 87 =0 and (a/B)" = 1, since R # 0. This is
impossible because 0/B is not a root of unity. Note that

k-1
w, = Za(k—l—L)}z . Bm’z'
1=0

The k algebraic integers o*"17%8%, 0 < ¢ < k - 1, are all distinct because o/f
is not a root of unity. If o and B are rational integers, then the numbers
ak-1-%gt 0 <4 <k - 1, certainly satisfy a monic polynomial of degree k over
the rational integers. If ¢ and R are irrational, then o and B are conjugate
in the algebraic number field X = g(a, B) = @(a), where § denotes the rational
numbers. Thus, o* 1 %g% and o%8%"1-% are conjugate in X. Hence, the numbers
ak-1-%0%, 0 < 7 < k - 1, satisfy a polynomial of degree k which is a product of
monic, integral quadratic polynomials and at most one monic, integral linear
polynomial. By our discussion preceding the statement of Lemma 1, the sequences
{(uk"l_lﬁl)n}:=l, 0< 7 <k -1,all satisfy the same linear integral recursion
relation of order k. Thus, {w,},_,, the sum of these k sequences, also satisfies
this same recursion relation.
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To prove the minimality of k, we first note that {w,} may also be defined
for n = 0 if we put w, = k. Replacing D,(t) of Lemma 1 by D,(s,, t), the mini-
mality will follow if we can show that Dk(wn,O) # 0. To illustrate the method,
let us take k = 3 as an example, when

3 a? + aBf + B2 a* + a?B? + g*
Dy Wy, 0) = |0 + of + B2 a* + a?B? + g*  of + a%p® + B®

o + a?B% + B*  of + B + 8% af + oMp* + B°

The corresponding matrix may be written as the product

1 1 1 1 o ot
a?  aB g2l «[ 1 oB a2p?
OL’+ OCZBZ B’-& 1 82 BL}

Thus, D;(w,, 0) is the square of a Vandermonde determinant:

2
1 a? o

Dy(w,, 0) = |1 aB a?B?| = [(aB - a®)(B* - a®)(B* - aB)]?.
1 g* g
Since we assume of # 0 and a/B is not a root of unity, we have Dy (w,, 0) # 0,

as required.
In the general case, we similarly get

1 ak-1 (uk—l)z . (uk—l)k—l 2
Dk(w O) _ 1 OLk—ZB (uk—ZB)Z .. (O(.k_ZB)k_l % 0,
1 Bk-l (Bk—l)z (Bk—l)k—l

and the proof of the minimality is completed.

As a final remark, we note the condition for a/f not to be a root of unity.
When of = -b # 0, then 2z = a/B is the root of a quadratic equation

a2
p(z)=zz+(?+2z+1=0.
If o/B8 shall not be a root of unity, we must have z # *1, and p(z) cannot be

one of the quadratic cyclotomic polynomials 22+ 1, 32 + 2 + 1. Hence, we must
demand that

E‘b— + 24 %2, 0, 21 or -a® #0, b, 2b, 3b, 4b.
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