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Let {un} be a Lucas sequence of t he f i r s t k ind def ined by the second-order 
r e c u r s i o n r e l a t i o n 

un+2 = aun+1 + bun, 

where a and b are integers and uQ = 0, u1 = 1. By the Binet formulas 

un = (an - 3n)/(a - 3), 

where a and 3 are roots of the characteristic polynomial 

Let 
D = (a - 3)2 = a2 + kb 

be the discriminant of the characteristic polynomial of {un}. We shall prove 
the following theorem which demonstrates that the quotients of specified terms 
of the second-order recurrence {un} satisfy a higher-order relation. 

Theorem 1: Consider the sequence 

{w n } ^ = 1 = {unk/un}™=1, 

where k is a fixed positive integer, a$ ^ 0, and a/3 is not a root of unity. 
Then {wn} satisfies a kth-order linear integral recursion relation. Further, 
the order k is minimal. 

Along the lines of this theorem, Selmer [1] has shown how one can form a 
higher-order linear recurrence consisting of the term-wise products of two 
other linear recurrences. In particular, let {sn} be an mth-order and {tn} be 
a pth-order linear integral recurrence with the associated polynomials s(x) and 
t(x), respectively. Let a^, i = 1,2, ..., m, and 3j, j = 1, 2, ..., p, be the 
roots of the polynomials s(x)andt(x), respectively, and assume that each poly-
nomial has no repeated roots. Then, the sequence 

{hn} = {sntn} 

satisfies a linear integral recurrence of order at most mp, whose characteris-
tic polynomial h(x) has roots consisting of the v distinct elements of the set 
{o^3j}> where 1 < i < m and 1 < j < p. Note that the coefficients of h(x) are 
integral because they are symmetric in the conjugate algebraic integers a^j-
However, {hn} may satisfy a recursion relation of order lower than r. 

Selmer Ts proof depends on the fact that the recurrences {sn} and {tn} can 
be expressed in terms of their characteristic roots by means of the formulas 

m P 

Sn = E Y^ai> tn = E ^ 3 j . (1) 
i = 1 j = 1 
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This follows from the fact that the sequences {a"}, Ki</77, and (3}}, l^j^p, 
satisfy the same recursion relations as {sn} and {£„}, respectively. Further, 
a linear combination of sequences satisfying the same linear recursion relation 
also satisfies that linear recursion relation. By means of Cramer's rule, one 
can then solve (1) for sn, Kn<tfz, and t n , Kn<p, in terms of a", Ki<m, 
and (3j, K j < p , respectively. The fact that the roots a-, l<i<m, and 37-, 
K j < p , are distinct guarantees unique solutions in terms of a" and - $r. Now, 

rln Sn ur WW' 
1< J^p 

and each a^3j is a root of the polynomial h(x). 
Before proving our main result, we will need the following lemma. 

of this lemma is given by Willett [2]. 
A proof 

Lemma 1: Consider the sequence {sn}. We i n t r o d u c e the de t e rminan t 

Dr(t) 

Wr-1 *t + r W2P-2 

Then {sn} satisfies a recursion relation of minimal order k if and only if 

and 
Dk(0) + 0 

Dp(0) = 0 for v > k. 

We are now ready for the proof of the main result. The first part of the 
proof will show that {wn} satisfies a fcth-order linear integral recursion rela-
tion. The second part of the proof will establish the minimality of k. The 
simple proof of minimality was suggested by Professor Ernst S. Selmer. 

Proof of Theorem 1: First, we claim that un + 0 for n > 1 and {wn} is well-
defined. If un = 0, then an - §n = .0 and (a/&)n = 1, since 3 ^ 0 . This is 
impossible because a/3 is not a root of unity. Note that 

The k algebraic integers ak~1~z$t, 0 < i < k - 1, are all distinct because a/3 
is not a root of unity. If a and 3 a r e rational integers, then the numbers 
ak-i-zgz^ 0 < i < ^ - 1, certainly satisfy a monic polynomial of degree k over 
the rational integers. If a and 3 are irrational, then a and 3 are conjugate 
in the algebraic number field K = Q(a, 3) = 5(a), where Q denotes the rational 
numbers. Thus, oJ<~1~'L$z an<^ at$ are conjugate in K. Hence, the numbers 
ak~1~l'$z, 0 < i < A: - 1, satisfy a polynomial of degree k which is a product of 
monic, integral quadratic polynomials and at most one monic, integral linear 
polynomial. By our discussion preceding the statement of Lemma 1, the sequences 
{(a ~^B^)n}™=1J 0 < i < k - l,all satisfy the same linear integral recursion 
relation of order k. Thus, {wn}™ = ], the sum of these k sequences, also satisfies 
this same recursion relation. 
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To prove the minimality of k, we first note that {wn} may also be defined 
for n = 0 if we put WQ = k. Replacing Dr(t) of Lemma 1 by Dr(sn, t) , the mini-
mality will follow if we can show that Dk(wn, 0) + 0. To illustrate the method, 
let us take k = 3 as an example, when 

Dk(wn, 0) 

a2 + a3 + 32 

The corresponding matrix may be written as the product 

Thus, Dk(wn, 0) is the square of a Vandermonde determinant: 

Dk(wn> ° ) = 

1 a2 a4 

1 a3 a232 

1 Q2 Qt 

[(aB - a2)(32 - a2)(32 - a3)]2. 

Since we assume a3 4- 0 and a/3 is not a root of unity, we have Dk(wn, 0) =f 0, 
as required. 

In the general case, we similarly get 

Dk(wn, 0) 

.,k-l 

,k-2r 
(a*'1)2 

(ak-2&)2 

(a^ 1 )*" 1 

5k-i (B*"1)2 (gfc-lj*-! 

+ 0, 

and the proof of the minimality is completed. 

As a final remark, we note the condition for a/3 not to be a root of unity. 
When ag = -b £ 0, then z = a/3 is the root of a quadratic equation 

GH-p(z) = sz + l^- + 2)z + 1 = 0. 

If a/3 shall not be a root of unity, we must have z ± ±1, and p(z) cannot be 
one of the c 
demand that 
one of the quadratic cyclotomic polynomials z2 + 1, z2 ± z + 1. Hence, we must 

4- + 2 + ±2, 0, ±1 or -a2 + 0, b, lb, 3b, Ab. 
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