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EulerTs integers are less known than the classic Eulerian numbers, though, 
in figurate form, they appear since antiquity.* 

First, we shall look at their origin and find their general expression; 
then we shall establish some of their properties and give various combinatoric 
applications. Several results may not have been published previously. 

The notation of periodic numbers and the notion of arithmetic polynomials 
will be useful tools. 

I. GENERAL EXPRESSION OF EULER'S INTEGERS 

Consider the infinite product 

n(x) = (1 - x)(l - x2)(l - x 3)... 

which Euler encountered in relation to the problem of the partition of inte-
gers. For instance, he showed that the number p{n) of partitions of n into 
integers, distinct or not, is generated by the function 

-T-T = 1 + E P(n)xn. 

If we develop n(x) in series, we expect a priori to find increasing coeffi-
cients. But, surprisingly, all coefficients are +1 or -1, isolated in gaps of 
zero coefficients, gaps which, on the whole, increase and tend to infinity. More 
precisely, 

i\(x) = 1 - xai~ xa2+ xa'+ xa" - xas- xa*+ ... + enxan+ ... (1) 

The coefficients are pairwise alternately -1 and +1. In order to see the 
behavior of the exponents, we shall examine some initial values of Euler's in-
tegers an: 

TABLE 1 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

an 1 2 4 7 12 15 22 26 35 40 51 57 70 77 92 100 

An (I) 3 (2) 5 (3) 7 © 9 ® 11 © 13 © 15 ® 

The integers an seem to follow a complicated law, since their rate of in-
crease oscillates. But if we form the differences An = an+1 - an, we see that 
they are the integers for n odd, and the odd numbers (beginning with 3) for n 
even. 

Now, we shall try to express the general term £n# " of the series (1) in a 
simple form. 

*The two kinds of Eulerian numbers En and A(n, k) are defined by: 

T — = E En ^r and xn = E A(n, k)(X + k ' l). 
cosh x n% n\ l £ ^ n

 J\ n ) 
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Definf t ions. 

(1) A periodic number un = [u1, u2> . . . , uk] is equal to the u^ in the 
brackets, such that i = n, modulo k. So we represent a series of period k by 
its k first terms. For instance, un = [a, b] equals a or b, according to whe-
ther n is odd or even, and un = [4,-1, 0] is the nth term of the series 4, -1, 
0, 4, -1, 0, 4, -1, 0, ... 

(2) An arithmetic polynomial P(n) is defined only for positive integers 
and takes only integer values. Contrary to an ordinary polynomial, some of its 
coefficients are periodic numbers. Example: 3n2 - [4, -1, 0]n + [5, 7]. 

We shall admit the following theorem, easy to establish [1]. 

Theorem 1 

ForMi= [a. b],ZX= ( a + ')WVa-'' ° ]; 
£ = 1 z 

r t l. A (a + b)n2 + [2a, 2b]n + [a - b, 0] 
for ui = [a, Z?H, J2 ui = ^ — ^ ~ " — • 

i = 1 
Clearly, 

A* = ^-—[l, 2] = |[1, 2]i + | [ 1 , 2]. 

So we can calculate 
n-l 

an
 = * + 2 î 

£ = 1 

by Theorem 1. Paying attention in brackets to the difference in parity of n - l 
and n, we find 

, , 1 3(n - 1) + [0, 1] , I 3(n - l) 2 + [4, 2](n - 1) + [0, -1] 
a„ - l + 2 • 2 + 2 • 4 

and, after simplification: 

Theorem 2 

The nt h Eulerian integer is the arithmetic trinomial 

3n2 + [4, 2]n + [1, 0] _ ^(3n + [4, 2]) (2) 

where the double bars indicate the nearest integer. 

Corol1ary 

The general term of the series u(x) is 

We define Eulerfs integers an by Table 1, indefinitely extended by means 
of the two arithmetic progressions mixed in A„, and then deduce (2) * But we 
have admitted (1) without proof, and so did Euler for ten years. In an article 
entitled "Discovery of a Most Extraordinary Law of Numbers in Relation to the 
Sum of Their Divisors," he said: 
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I have now multiplied many factors, and I have found this progression. 
. . . One may attempt this multiplication and continue it as far as one 
wishes, in order to be convinced of the truth of this series. . . . A long 
time I vainly searched for a rigorous demonstration . . . and I proposed 
this research to some of my friends, whose competence in such questions I 
know; they all agreed with me on the truth of this conversion, but could not 
discover any source of demonstration. So it will be a known, but not yet 
proven truth. 

Nevertheless, he finally proved it in a letter to Goldbach (1750). In the 
next century, various demonstrations were found, especially by Legendre [2], 
Cauchy, Jacobi, and Sylvester. 

II. PROPERTIES OF EULER'S INTEGERS 

First a quite simple question: What is the parity of the nth Eulerian inte-
ger? If one observes Table 1, it seems that the same parities reappear with 
period 8. That is true, for 

an+s = 3 ( n + 8 ) ' + [ 4 , 2](n + 8) + [1, 0] = ^ + 6 n + [28> 2 6 ] 

whether 6n + [28, 26] is even. Likewise, we find: 

Theorem 3 

Modulo k, the Eulerian integer an = ccn + hk or an E ccn + 2k, according to whe-
ther k is even or odd. Particularly, 

an = [1, 0, 1, 1, 0, 1, 0, 0], mod 2; 

an = [1, -1, -1, 1, 0, 0], mod 3. 

Now a more important question: Find a characteristic property of the inte-
gers an. An integer N is Eulerian, if the equation in n, 

N = 9n2 + [4, 2]n +[1,0] o r 3 n 2 + [4> 2]n + [1( Q ] _ M m 0> 
O 

has an integer and positive root. Therefore, its discriminator 

[2, l] 2 - 3[1, 0] + 24# = [4, 1] - [3, 0] + 24iV = 2421/ + 1 

must be a square. Conversely, if 

24/V + 1 = k1, 

k has the form 3n + 2 or 3n + 1. But Eq. (2) gives 

24an + 1 = 9n2 + 3[4, 2]n + [4, 1] = (3n + [2, l])2. 

So N is the nth Eulerian integer. 

Theorem k 

An integer N is Eulerian iff 24iV + 1 is a square k2. Then its rank is U-
(the greatest integer < k/3). 

The integers an have a second characteristic property, an arithmogeometric 
one. If in (2) we distinguish n odd and n even, we have: 

a) n = 2k - 1: an = — q
 K = 1, 5, 12, 22, ...; 
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b) n = 2k: an = JK
 2

 K = 2, 7, 15, 26, ... 

3k2 - k 
The integers are the pentagonal numbers, known since antiquity, and 

they count the dots of the closed pentagons below. 

3k2 + k The integers also have a simple figurative signification: they count 

the dots of the open pentagons. Therefore, we call them seoond-olass pentag-

onal numbers. Note that we also get them by ~ — for k = -1, -2, -3, ... . 

Theorem 5 

Eulerian integers and pentagonal numbers are identical. 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . .. 

an (7) 2 (?) 7 (12) 15 (22) 26 (35) 40 @ 57 (70) 77 (92) 100 ... 

Do the integers an satisfy a recurrence relation? Yes, for an is an arith-
metic polynomial. We know [1] that such a polynomial an of characteristics (d, 
g, p) (we shall define this notion directly) verifies the linear recurrence 
relation 

{(1 - a)d~g(l - ap)g+1} = 0, 

the exterior braces meaning that in the developed polynomial each power a^ will 
be replaced by an_i. For our trinomial an of (2), the degree d = 2, the grade 
g = 1 (i.e., that n1 is the highest power with periodic coefficient) and the 
pseudoperiod p = 2 (the least common multiple of the periods of the coeffi-
cients) . So 

{(1 - a)(l - a2)2} = {1 - a - 2a2 + 2a3 + ah - a5} = 0. 

Theorem 6 

The Eulerian integers verify the recurrence relation. 

an - <z„_i " 2an_2 + 2an_3 + an_h - an_5 = 0. 

We know [1] that every arithmetic polynomial an whose recurrence relation 
is {F(a)} = 0 is generated by a rational fraction f(x)/F(x), where f(x) is of 
lower degree than F(x). So the Eulerian integer an is generated by a fraction 

£ ^ r-5- = 1 + x + 2x2 + 5x3 + lxh + • • - + anxn + -.. , 
(1 - x)(1 - xz) 

where f(x) is of degree 4 at most. Hence, 

f(x) = 1 - x2 + 3x3 + x1*. 
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Theorem 7 

Euler*s integers are generated by the fraction 

\__-_x + 3x + xh = ! + y; a xnm 

(i - x)a-x2)2
 nr0 

As application, we now shall see EulerTs integers in relation to the Eule-
rian function an and the partitions. 

111. EULER'S FUNCTION o{n) 

As usual, o(n) indicates the sum of the divisors of the integer n. Hence, 
cr(8) = 1 + 2 + 4 + 8 = 15, and o(n) = 1 + n, iff n is prime. Descartes already 
noted that a(nm) = o(ri)o(m), iff n and m are relatively prime. The first val-
ues of o(n) are: 

n 1 2 3 4 

o(n) 1 3 4 7 
5 6 7 8 9 10 11 12 13 14 15 16 

6 12 8 15 13 18 12 28 14 24 24 31 

With respect to this table, far prolonged, Euler observed: "The irregulari-
ty of the series of the prime numbers is here intermingled. ... It seems even 
that this progression is much more whimsical." Indeed the values of o(n) pre-
sent an infinity of irregular oscillations. But Euler discovered an unexpected 
law in their capricious succession. 

Theorem 8 

The function o~(n) verifies the recursive relation 

o(n) = o(n ~ a±) + o(n - a2) - o(n - a3) - o(n - ah) + 
with the convention 

(3) 

Lf k = 0, 
If k < 0. 

/7 N / n if a(fe) = { 0 if 
The a^ are EulerTs integers and the signs alternate pairwise. 

Example: a(7) = a(6) + a(5) - a(2) - a(0) =12 + 6 - 3 - 7 = 8. 

Admire the masterfs ingenious demonstration: 

Take the logarithmic derivative of the two members of (1) and multiply 
them by (-x): 

= fix) 
i\(x)' y 

a x l + a x 
1 2 

a x 
3 

a x"h + > 
4 

1 - X 1 - X2 1-x3 7T(x) 

Develop in series the fractions of the first member: 

y 
+ 2x2 + 2xh + 2x6 

+ 3x3 + 3#6 

+ hxh 

+ 5^r5 

+ 6x6 

+ 7^r7 

+ 2^8 + 
+ 

+ hx& + 
+ 
+ 
+ 

+ 8x8 + 
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Hence, 
y = o(l)x + o(2)x2 + a(3)x3 + ... . 

The identity 0 E -f(x) + yn(x) then gives: 

® = -x - 2x2 + 5x5 + 7x7 + 

+a(l)ar + a ( 2 ) ^ 2 + a(3);c3 + a ( 4 ) ^ + a ( 5 ) x 5 + o(6)x6 + a ( 7 ) x 7 + 

-o(l)x2 - o(2)x3 - a(3)xk - aWx5 - o(5)x6 - o(6)x7 + 

- a ( l ) x 3 - 0 ( 2 ) ^ - o(3)x5 - a ( 4 ) x 6 - o(5)x7 + 

+o(l)x& + o(2)x7 + 

Relation (3) states that the coefficient of xn in the second member of the 
preceding identity if zero. We see it clearly when we look at the coefficient 
of x7 for example. 

T, c . o(n) The Series u = —-—-

We proved that the function \^ increases and we shall see that it tends 
to infinity with k. 

Let P1 , P , . . . , Pr be the prime numbers up to Pr . Then 

o(P^) i o(Prl) .•£ and £ < - l > ( l + i _ ) ( l + 3 L ) . . . ( l + i ) . 
Hence, 

the sums being taken from i = 1 to i = r. We know that 2"5~ "* °°  with r, while 

the other sums converge. Therefore, pt -> °°  with P, and also \ t* • °°  with 

What a curious series is un = ! Obviously, un > 1. It oscillates 

irregularly—probably between 1 and 6 for n < 1017—but it presents an initial 
regularity: it has a relative extremum for each n < 62. The extreme example is 
likely 

n = 21 2 . 36 . 5 • 7 • 11 • 13 . 17 • 19 • 23 • 29 • 31 - 0.998 x 1017 

with un ~ 5999. It contains at once a decreasing series u(P^)5 which tends to 
1, a constant series u(Ey) = 2, where Z^ is the kth Euclidean integer, increas-
ing series u(ak) s which tend to finite numbers if k ->• °o, and an increasing 
series u(k\), which tends to infinity. Furthermore, wnm = unum if n and m are 
relatively prime, and unm < unum if not. For a prime P and an arbitrary inte-
ger k, u(Pk) < 2. While 

uY = 1, w6 « 2, u12 0 = 3, u302lf0 = 4, 

the least known n for un = 6 exceeds 1028 and the least n for un = 8 is gigan-
tic [3]. Descartes, Fermat, and others, assiduously searched for values of n 
for which un is an integer. All the found values, save 1 and 6, are multiples 
of 4. 

Perfect numbers can be defined by un = 2. Euler proved that the only even 
•perfect numbers are the Euclidean integers p(p + 1) /2, where p=2k + 1-l is prime. 
Can an odd perfect number exist! Nobody knows. But we know that the order of 
such an odd n would be at least 10200 [3]. The difficulty of this millenary 
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q u e s t i o n has been compared t o t h a t of t h e t r anscendency of i\ ( p r e v i o u s l y , t o 
Lindemann's h i s t o r i c a l d e m o n s t r a t i o n ) or t h a t of Fermat*s open problem. More 
g e n e r a l l y : 

Conjecture 

For an odd n , save 1, t h e number un i s never an i n t e g e r . 

Here a r e some i n i t i a l v a l u e s of u(kl), approached for k > 5: 

k 1 2 3 4 5 6 7 8 9 1 0 — 1 3 — 2 0 — 30 

u(kl) 1 1.5 2 2 .5 3 3.36 3.84 3.95 4.08 4 .22 —4.99 —5.52 —5.95 

Generally, un < u(kl) for n < k\ . But never: 30240 < 8!, although ^(30240) = 4 
(found by Descartes) exceeds u(8l) — 3.95. 

IV. PARTITIONS INTO DISTINCT OR UNRESTRICTED PARTS 

Another Eulerian formula is strangely similar to (3) . It concerns the num-
ber pin) of partitions of n, into integers distinct or not, whose first values 
are: 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

pin) 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 

Theorem 9 

The number of unrestricted partitions of verifies the recursive relation 

-pin) = p(n - ax) + p(n - a2) - pin - a3) - pin - ah) + ••• 

with the convention 

/7s (1 if k = 0, 
V(k) = { 0 if k < 0. 

The CLi are Euler?s integers and the signs alternate pairwise. 

This formula results directly from the fact, mentioned at the beginning, 
that p(n) is generated by l/i\(x). 

Is it not fabulous that two beings, so disparate as o(n) and pin) (sum of 
the divisors of n and number of its partitions) follow the same recursive law 
(aside from a slight detail: 0Q = n, pQ = 1)? 

Could a similar recursive law exist, perhaps not linear, for the prime num-
bers Pn? 

Recently D. R. Hickerson found an interesting relation between the numbers 
of distinct or unrestricted partitions [4]: 

Theorem 10 

The number pn of unrestricted partitions of n and the number qn of its par-
titions into distinct parts are related by 

Qn = Pn Pn-2ax ~ Pn-2a2
 + Pn - 2a3

 + Pn - 2aH ~ 

with the convention 
/l if k = 0, 

P " (0 if k < 0. 

224 [Aug. 



EULER'S INTEGERS 

The signs alternate pairwise. 

Starting from the generating functions of pn and an, we have established an 
unexpected relation between them: 

Theorem 11 

The arithmetic functions pn and on are related by 

°n = «iP„.fll+ *2Pn-a2- a,Vn.a~ %Vn . a+ ' 
with the convention 

( 1 if k = 0, 
Pk (0 if & < 0. 

The signs alternate pairwise. 

Conjecture 

For n > 6, the function Lp /Vn increases and Lp /n decreases. But 

> 1.44 and < 0.33. 
V20 

Hence, 
g1.44V^ < p^ < g<>.33« f o r n > ^ ( 4 ) 

Remarks 

1) An asymptotical value for pn was found by Hardy and Ramanujan: 
/in 

e v 3 g2.57v^ 

4v3n 6.93n 

Consequently (4) is proved for n great. 

2) We know that the number of partitions of n into unrestricted parts is 
2n - 1, if the order of the summands is relevant. 

Example: For n = 3 = l + 2 = 2 + l = l + l + l , this number is 22. 

Therefore, p < 2 n _ 1 for n > 2. 

Theorem 12 

Let q^ and q^9 respectively, be the numbers of partitions of n into an even 
or an odd number of distinct parts. If the integer n is not Eulerian, q£ = q"; 
for a Eulerian integer an9 qu

a = q^ + [-1, -1, 1, 1], the periodic number be-
ing related to the rank n of an. 

Corollary 

The number of partitions of an integer n into distinct parts is odd iff 
is Eulerian. Euler stated that this number equals the number of partitions of 
n in which all parts, distinct or not, are odd. 
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The coefficient of xN is the same in the series 

(1 - x) (1 - x2) (1 - x3) ••• = 1 + c±x + o2x2 + .-. + cNxN + -•• 

and in the polynomial 

(1 - x) (1 - x2) (1 - x3) • • • (1 - a?*) = 1 + c^x + <?2x2 + • • • + ^a?* + ^+ 1P(x) . (5) 

By developing the product (5) without reducing similar terms, we get, with 
coefficient (+1), every xN whose exponent appears as a partition of N in an even 
number of distinct terms, and with coefficient (-1), each xN whose exponent ap-
pears as a partition of N in an odd number of distinct integers. Therefore, 

But in (1), en = [-1, -1, 1, 1] or 0, according to whether N is Eulerian or not. 

Remarks 

1) Although Theorem 12 follows easily from identity (1), Legendre seems to 
have been the first to state it [2]. 

2) Now the great gaps in the series (1) are explained: they simply signify 
that generally an integer has as many partitions in an even as in an odd number 
of distinct parts. 

3) An odd qn is characteristic of Eulerian integers, as an odd on is char-
acteristic of squares or double squares. But the problem of the parity of p 
is still open. 

V. PARTITIONS INTO PARTS OF GIVEN VALUES 

The following text of Euler shows with charming simplicity his enthusiasm 
for his amazing formula (3). His integers seem to be still a little mysterious 
to him. 

We are the more surprised by this beautiful property, as we see no 
relation between the composition of our formula and the divisors whose 
sums concern the proposition. The progression of the numbers 1, 2, 5, 
7, 12, 15, ... not only seems to have no relation to the subject, but— 
as the law of their numbers is interrupted and they are a mixture of 
two different progressions: 1, 5, 12, 22, 35, 51, ... and 2, 7, 15, 26, 40, 
57, ...—it almost seems that such an irregularity could not exist in 
analysis. 

So Euler was surprised that an takes its values from two progressions, tri-
nomials of the second degree. However, notwithstanding what he believed, one 
often meets in analysis series of integers that take their values from several 
polynomials: the arithmetic polynomials, which all have a generating rational 
fraction and satisfy a linear recurrence relation. It is piquant to see that 
such series occur, particularly in a question which Euler examined at length: 
the partition into parts of given values [5]. 

Example 1 

In how many ways can n identical objects be divided in groups of 12, 13, 
and 17 pieces? 

This is equivalent to finding the number j n of nonnggative integer solu-
tions of the equation 

12a? + 13z/ + 17s = n. (6) 
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Those problems are solved by a general theorem, whose first part is due to 
Euler: 

Theorem 13 

The number j n of nonnegative solutions of the diophantine equation 

5^ a^x'1 = n 
i = l 

with positive coefficients, is generated by the fraction 

1 

(1 - tai) (1 - taz) ... (1 - tar) n>o 
Y,ont\ 

The function j(n) is an arithmetic polynomial, whose pseudoperiod is the least 
common multiple of the a^, its degree r - 1 and its grade m - 1, m being the 
greatest number of coefficients a^ that have a common divisor other than 1 [1]. 

So, for Eq. (6), j n is an arithmetic trinomial whose characteristics are 
(2, 0, 2652). More precisely, we know [1] that j n verifies a relation of the 
form 

2(12 x 13 x I7)jn = n2 + (12 + 13 + 11)n + un9 

where un is a number of period 12 x 13 x 17 = 2652. 
You may think the 2652 components of the periodic number un long to calcu-

late, and the expression of j n long to write. Not at all. The calculation of 
un is performed in an instant by the computer (with the program for the reso-
lution of a system of linear equations, which every computing center has) and 

vn 
n2 + 42n + 100C4n - Bn) 

5304 

where the periodic numbers 

An = [5, 21, 25, 17, -2, 17, 25, 21, 5, 30, 42, 42, 30] 
and 

Bn = [-2, 17, 6, 17, -2, 0, 24, 17, 33, 17, 24, 0] 

have, respectively, 13 and 12 components. 
The error is at most 1, for 

J„ 
n(n + 42) 

5304 

Example 2 

What is the number of solutions in nonnegative integers of the equation 

x + 2y + 6s + 3 = 3n? 

We have shown that this number is Euler1s integer an. 

Note that an has the characteristics (2, 1, 2), while, for the diophantine 
equation 

x + 2y + 6z = n 

the number of nonnegative solutions is, by Theorem 13, an arithmetic trinomial 
of characteristics (2, 1, 6). 
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