A COROLLARY TO ITERATED EXPONENTIATION

R. M. STERNHEIMER

Brookhaven National Laboratory, Upton, NY 11973

(Submitted October 1983)

In connection with three previous papers on the convergence of iterated exponentiation by Creutz and Sternheimer [1], [2], [3], and with some earlier work [4], [5], it occurred to me that the problem of the proof of Fermat's Last Theorem might be intimately connected with the properties of the function $F(x, y) \equiv$ $x^{y} - y^{x}$, and in particular with the condition that

$$F(x, y) = 0, \tag{1}$$

when x and y are restricted to be positive integers [6]. It can be shown that aside from the trivial solution x = y, (1) is satisfied only for x = 2, y = 4, in which case

$$F(x, y) = 2^4 - 4^2 = 0.$$
 (2)

In order to prove this property of F(x, y), we consider Figure 1 of [1]. This figure gives the function f(x) defined by the condition

 $x^f = f$. (3)

In Figure 1 of [1], we consider the continuation of the dashed part of the curve to the right of f(x) = e up to the region of f(x) = 4. It is easily seen that the corresponding x is $\sqrt{2}$, since $(\sqrt{2})^4 = 2^2 = 4$ satisfies (3). We also have f(x) = 2 for $x = \sqrt{2}$, as shown by the left-hand part of Figure

1. If we denote the two values of $f(\sqrt{2})$ by f_1 and f_2 , we have

$$x^{f_1} = f$$
 , $x^{f_2} = f$, (4)

where $x = \sqrt{2}$. We can rewrite (4) as follows:

$$f_1^{1/f_1} = f_2^{1/f_2} = x = \sqrt{2}.$$
(5)

From (5), we obtain (by raising to the power f_1f_2):

$$f_{1}^{f_{2}} = f_{2}^{f_{1}}, \tag{6}$$

i.e., $2^4 = 4^2$.

Thus the two values of f(x) for a given x, namely f_1 and f_2 , are the solutions of the equation $f_1^{f_2} = f_2^{f_1}$ (6). We can now set $f_1 = x$, $f_2 = y$ in the notation of (1) (where x is not to be confused with the auxiliary x of Figure 1 of [1]). Now, from Figure 1, it is obvious that one of the f's, say f_1 , must be less than e, while the other f, say f_2 , must be larger than e. It is also clear that, since the only integer smaller than e and larger than 1 is 2, the equation $f_1^{f_2} = f_2^{f_1}$ can be satisfied only for $f_1 = 2$, $f_2 = 4$, if f_1 and f_2 are restricted to be integers.

This manuscript was authored under Contract No. DE-AC02-76CH00016 with the U.S. Department of Energy. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

146

A COROLLARY TO ITERATED EXPONENTIATION

Incidentally, Figure 2 of [1] shows that, when the ordinate x is less than 1, there is no second branch of the curve of x vs. f, and therefore, for $f_1 < 1$, there is no f_2 such that $f_1^{1/f_1} = f_2^{1/f_2}$. The fact that x = 2, y = 4 is the only integer solution of F(x, y) = 0 can

also be seen by inspection, i.e., by calculating

$$F(2, 3) = -1, F(2, 4) = 0, F(2, 5) = 7, F(2, 6) = 28, F(3, 4) = 17,$$

etc. Also, for arbitrary x and y such that the difference $y - x \equiv \Delta x$ is small, it can be shown by differentiation of x^y with respect to both x and y that

$$F(x, y) = \overline{x}^{\overline{x}}(\ln \overline{x} - 1)(y - x), \qquad (7)$$

where $\overline{x} \equiv (x + y)/2$. In order to prove (7), we note that

$$F(x, y) = x^{x+\Delta x} - (x + \Delta x)^x.$$
(8)

Now, if Δx is small, we can expand both terms in the right-hand side of (8) as follows, to first order in $\bigtriangleup x$:

$$x^{x+\Delta x} = x^x + x^x \ln x \Delta x, \tag{9}$$

where we have used $\partial x^{y}/\partial y = x^{y} \ln x$. Moreover,

$$(x + \Delta x)^x = x^x + x^x \Delta x, \tag{10}$$

where we have used

$$\partial x^{y} / \partial x = y x^{y-1} = \frac{y}{x} x^{y} \approx x^{y}.$$
⁽¹¹⁾

Upon subtracting (10) from (9), one finds:

$$F(x, y) = x^{x}(\ln x - 1)\Delta x = x^{x}(\ln x - 1)(y - x).$$
(12)

Because of the rapid increase of x^x with increasing x, one will obtain a more accurate result by evaluating the derivatives $\partial x^{y}/\partial y$ and $\partial x^{y}/\partial x$ at the midpoint of the interval (x, y), i.e., at the point $\overline{x} = (x + y)/2$. Upon making this substitution in (12), one obtains (7).

Equation (7) shows that for y - x small, x^y is *larger* than y^x for positive Δx if $\overline{x} > e$ and is *smaller* than y^x for positive Δx if $\overline{x} < e$. As an example, $1.6^{1.7} = 2.2233$ is smaller than $1.7^{1.6} = 2.3373$ because 1.6, 1.7 < e. The difference F(1.6, 1.7) = -0.1140 is very well reproduced by (7), which gives, with $\bar{x} = 1.65$:

$$F(1.6, 1.7) = 1.65^{1.65} (\ln 1.65 - 1)(0.1) = -0.1140.$$
⁽¹³⁾

As a second example, $2.9^{3.0} = 24.389$ is larger than $3.0^{2.9} = 24.191$ because 2.9, 3.0 > e. We find F(2.9, 3.0) = 24.389 - 24.191 = +0.198, and this difference is very well reproduced by (7), which gives, with \overline{x} = 2.95:

 $F(2.9, 3.0) = 2.95^{2.95}(1n \ 2.95 - 1)(0.1) = +0.199.$ (14)

Equation (7) again points out the crucial role of the constant e for the sign of F(x, y), since $\ln \overline{x} - 1 = \ln(\overline{x}/e)$. The same equation also shows that for x and y close to e and x < e, y > e, we must have

 $\overline{x} = (1/2)(x + y) = e$ for F(x, y) = 0.

Obviously, (7) does not hold when the difference y - x is large, and the previous result x = 2, y = 4 with x < e, y > e can be regarded as an extreme example of (7) when higher derivatives of x^y , i.e., terms in $(\Delta x)^2$, $(\Delta x)^3$, etc., are included.

It is of interest to speculate that $x^n + y^n = z^n$ is solvable only for n = 1and n = 2 (with x, y, z = positive integers) because n = 1 and n = 2 are the

1985]

147

A COROLLARY TO ITERATED EXPONENTIATION

only positive integers smaller than e. Here I wish to mention that the Fermat equation $x^n + y^n = z^n$ has solutions both for n = 1 and n = 2. The case n = 2 has been discussed frequently; however, the case n = 1 also merits some attention. Thus, if we assume (by definition) that $x \ge y$, then x + y = z has z/2 distinct solutions when z = even, and it has (z - 1)/2 distinct solutions when z = odd. As an example for z = 11, we have five distinct solutions:

x + y = 6 + 5, 7 + 4, 8 + 3, 9 + 2, and 10 + 1.

In this connection, I wish to point out that in complete analogy to the exponent n which appears in the Fermat equation, the equation F(x, y) = 0, in addition to F(2, 4) = 0, also has a valid solution for x = 1, namely F(1, y) = 0 in the limit in which y approaches infinity. This additional solution will be discussed in detail in a forthcoming paper.

ACKNOWLEDGMENT

This work was supported by the Department of Energy under Contract No. $\mbox{DE-AC02-76CH00016}.$

REFERENCES

- M. Creutz & R. M. Sternheimer. "On the Convergence of Iterated Exponentiation—I." The Fibonacci Quarterly 18, no. 4 (1980):341-47.
- M. Creutz & R. M. Sternheimer. "On the Convergence of Iterated Exponentiation—II." The Fibonacci Quarterly 19, no. 4 (1981):326-35.
- 3. M. Creutz & R. M. Sternheimer. "On the Convergence of Iterated Exponentiation—III." The Fibonacci Quarterly 20, no. 1 (1982):7-12.
- R. M. Sternheimer. "On a Set of Non-Associative Functions of a Single Positive Real Variable." Brookhaven Informal Report PD-128; BNL-23081 (June 1977).
- M. Creutz & R. M. Sternheimer. "On a Class of Non-Associative Functions of a Single Positive Real Variable." Brookhaven Informal Report PD-130; BNL-23308 (September 1977).
- 6. I have also considered the properties of the function $G(x, y) \equiv x^y + y^x$. It is of interest that G(2, 6) = 100.

[May

148