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1. INTRODUCTION

The object of this paper is to generalize the results of Finkelstein [3], [4],
and Robbins [8] about the Fibonacci and Lucas numbers of the form 2% * 1, by
using the method of Cohn [2]. Some results which contain the Fibonacci and
Lucas numbers of the form 2z2 * 1 as special cases are also given.

In all cases we obtain information about the solution of an infinite class
of biquadratic diophantine equations, with the exception of Theorems 8 and 10,
where it is not known if the class considered is finite or infinite [5].

The following notation will be used:

« F,, L, for the (usual) Fibonacci, Lucas numbers.
e a = b (mod ¢) or a = b(e) for congruences.
e (a/b) for the Jacobi quadratic symbol.

* The solutions (#x, *y) of a diophantine equation are counted once if
x and y possess only even exponents.

2. PRELIMINARIES

Definition 1: Let d €N, d # 0, and d not be a square.
(i) d will be called of the first kind if the Pellian equation x? - dy® =
-4 has a solution with both & and y odd integers.

(ii) d will be called of the second kind if d is not of the first kind and
the Pellian equation z° - dyz = 4 has a solution with both & and y
odd integers.

Remark: A necessary but not sufficient condition for d to be of the first or
second kind is d = 5(8). A counterexample is d = 37.

Definition 2: Let d € N be of the first or the second kind w%th d > 5 + 8v.
Tet o = %(a + b/d) be the fundamental solution (see [7]) of x* - dy® = -4 or
x? - ayz = 4 and B = %(a - Wd). We define, for all integers #,

Up = d 2 (am - 8™
vV, = o+ g™

It is easy to see that U, = 0, U; = b, V, = 2, V, = a, and U,, V, are integers
for each n € Z.
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GENERALIZED FIBONACCI NUMBERS AND SOME DIOPHANTINE EQUATIONS

The terms of the sequence {U,}, n €N
alized Fibonacei (Lucas) numbers.

({V,}, n € N) will be called gener- -

Remarks: (i) From Definitions 1 and 2, it follows that both a and b must be

odd.

(ii) If b =1, then our definition of generalized Fibonacci numbers
agrees with the Fibonacci polynomials U, = F,(a), a odd, but in
general, b can be different from one as for example in the case

d=26l, a=39, b=>5.

From now on, d will always be of the first kind with the fundamental solu-

tion %(a + bVd) of the corresponding Pellian equation x° - dy® = —4.

to [2], the following identities hold:
U = aU

n+2
= aVl,

Vn+2 n+1

u_, = (D" o,

Von = (=1)7V,,

2Un+n = UnVy & UnVns
2Wpnin = dUyU, + VpVy s
(-4 = V2 - dvz,
V:i=V,, + (-1)" -2,
2|U, iff 2|V, iff 3|,

1 if 3)n
(Uy> V) =
2 if 3|n,

V,i12 = Vy (mod 8),
2Wpeay = (CDF-120, (mod V),
2Whyoy = (DY12V, (mod V),
2Upson = (-1)Y2y,, (mod UN),
2Vm+ 2w (—l)NZVﬁ (mod UN),
V, = 2(mod a) if 2|n,
V, = (-1)"2 « 2 (mod b) if 2|n,
b= 1(4),
and, furthermore, for kK € Z, with 2|k, BIk,
{3(8) if k = 2(4)

n+l + Un’

+V,,

Hi

v, >0 and V, =
7(8) if 4k,

2\ _ k/2
(7-) = ok
Upt 2k = —Uyp (mod V),

Vm+2k = _Vm (mod Vk)’
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(#)- (2
() )

(ﬁ&> = —(%) provided that 5[k,
5

= SIS SR

the general solution of x? - dy?

the general solution of x? - dy?

=-bisax =V, .,y =

=4 is x = Vzn’ y = U2

n

n=1 if a = t?> and d # 5
if V, = 2, then{n =1, 3 if d =5
n =13 if 4 =13,
n =20
if V, = 2x%, then and
n =6 if 4 =5, 29,
n =20
. _ 2 n =12 ifd 5
if U, = x7, then n =2 if a = t2 and b = »?
n=2x1 if b = pr?,
n =20
if U, = 22®, thend{n =6 if d =35
and possibly the solutions »n = 3.
We also need some values for U, and V,:
n U, Vu
0 0 2
1 b a
2 ab a® + 2
3 (@2 + Db a® + 3a
4 (a® + 2a)b a* + 4a® + 2
5 (a* + 3a% + )b a® + 5a% + 5a
6 (a® + 4a® + 3a)b a® + 6a" + 94+ 2

3. GENERALIZED FIBONACCI NUMBERS OF THE FORM uz® + v

U2n+1’

Theorem 1: Let a = 1, 3(8) and b = 1
Up=az?2+ b, m=1(2),

has

(a) the solutions m = *1, *3, and *5

(b) the solutions m = *1, *5 if d =

(c) the solutions m = *1, +3 if g and b are both perfect squares, d # 5,

(d) only the solutions m = *1 in all

(8). Then the equation

13,

other cases.

(23)

(24)

(25)

(26)
(27)

(28)

(29)

(30)

(31)

Proof: It is sufficient by (3) to consider only the cases m = 1(8), 3(16),

and 5(16).
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GENERALIZED FIBONACCI NUMBERS AND SOME DIOPHANTINE EQUATIONS

Case 1. Let m = 1(8). For m=1, 2 =0 is a solution. If m # 1, then we
write m = 1+ 2+ 3% « n, where 4!n, 3Xn, and az® + b = U, =-U, (mod V) by (21).
Thus (az)? = -2ab (mod V,). But

() -

by (19), (20), (16), (17), and the assumption. Hence, U, # az?® + b.

Case 2. Let m = 3(16). If m = 3, then az® + b = (a® + 1)b iff 2% = ab iff
a and b are both perfect squares, since (a, b) = 1.

If m # 3, then we write m = 3 + 2+ 3° « n, where 8|n, 3*n, and az® + b = U,
-U, (mod V) = -(a”* + 1)b (mod V,), by (21). Thus (az)? = -abV, (mod V).

By applying (13) repeatedly, we obtain

2V, = —ZV%_H = 2Vn_8 = - 22V =4 (mod Vz), (32)
which by (19) implies V, = 2 (mod V,). Thus (V,, V,) = (2, V,) =1 and

(E)___Vf_)__i

V,) \V,) \V,

Now (-abV,/V,) can be calculated to be -1 by using (19), (16), (17), (33), and
the assumption. Hence, U, # az® + b.

*1.

Case 3. Let m = 5(16). If m =5, then there exists a solution iff az? + b =
(a* + 3a2 + 1)b iff 2% = a(a® + 3)b. Since b is odd and b|U,,

(b’ Vg)/(Uay V3) = 29
which implies (b, V;) = 1. Hence,
22 = a(a® + 3)b = Vb iff b = r? and a(a® + 3) = z3.

By [1], the last equation has only the solutions (z,, a) = (0, 0), (2, 1),
(26, 3), (*42, 12). Since we have a = 1(2), the only possible solutions are
(2, a) =(%2,1), (26, 3). For a =1, we have b = 1 = r2 and d = 5. For a = 3,
we have b = 1 = r2 and 4 = 13.

If m# 5, then m =5+ 2+ 3%+ n with 8|n, 3/n, and thus

U, = =Ug (mod V) = -(a* + 3a® + 1)b (mod V) by (21).

Applying (15) repeatedly and using (4), we have

2V, = ~2V,_¢ = 2Wy_1, = --+ = %2V, (mod U,). (34)
Since (V,, V,) =1 implies (2V,, U;) = 2, we see that

() - (“S2)(0) - (@ vor)?)
+ b = U,, we have '

(ax)? = -a(a* + 3a® + 2)b = -abV,U, (mod V,),

which is impossible because (-abV,U4/V,) = -1 by (19), (16), (17), (33), (35),
and the assumption. Hence, U, # az2 + b.

Now, if az?
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GENERALIZED FIBONACC! NUMBERS AND SOME DIOPHANTINE EQUATIONS

Corollary 1: The diophantine equation %?= a’dz" + 2abdz? + a? with a = 1, 3(8)
and b = 1(8), has

(a) three solutions (x, y) = (1, 0), (&4, *1), (x11, +2) if d
(b) two solutions (x, z) = (3, 0), (£393, 16) if d = 13,

(c) two solutions (x, z) = (*a, 0), (*a(a? + 3), *tr), where @ = t2 and b = r?2
are both perfect squares, d # 5,

5,

(d) only one solution (x, 2) = (*a, 0) in all other cases.
Proof: This follows directly from (26), Theorem 1, and Definition 2.
Following the arguments of Theorem 1 and Corollary 1, we have

Theorem 2: Let b = 1(8). Then the equation U, = 22 4+ b, m= 1(2), has
(a) the solutions m = *1, %3, *5, if 4 = 5,

(b) the solutions m = =1, £3, if b = r?, d # 5,

(c) only the solutions m = #1 in all other cases,

and

Corollary 2: The diophantine equation x? = dz* + 2dbz? + a” with b = 1(8) has
(a) three solutions (x, z) = (1, 0), (x4, +1), (x11, #2), if d = 5,

(b) two solutions (x, 2) = (*a, 0), (za(a® + 3), *ar) if b = r%, d # 5,

(c) only one solution (x, z) = (*a, 0) in all other cases.

We now show the following results, which are similar to the above but with
m even.

1, 3(8) and b = 1(8) or a = 5, 7(8) and b = 5(8). Then the

Theorem 3: Let a
ab, m = 0(2), has only the solution m = 2.

equation U, = 22

+ 1

Proof:

Case 1. Let m = 0(4). No solution exists for m = 0; but if m # 0, then we
write m = 2 * 3°+ n with 2|n, 3}n, and thus U, = 0 (mod V,) by (21). If Un =
2% + ab for some m, then we have 22 = -ab (mod V,;), which is impossible, since

(-ab/V,) = -1 by (19), (16), (17), and the assumption.

Case 2: Let m = 2(8). For m = 2, we have the solution z = 0. If m# 2,
then we write m = 2 + 2+ 3%« n with 4|n, 3Jn, and thus

Uy = =U, (mod V) -ab (mod V,) by (21),

Thus, if Um = 22 + ab, we should have 22 = -2ab (mod V,), which is impossible,
since (-2ab/V,) = -1 by (19), (20), (16), (17), and the assumption.

Case 3: Let m = 6(8). If m = 6, we have a solution iff

22 + ab = (a® + 4a® + 30)b iff 2% = a(a® + 4a® + Db = aV,b.
But b]Uh; hence,

(b, V,)/W,, V,) =1 by (10).
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Therefore, it follows that b = t%, a = r?, and a* + 4a® + 2 = V, = s?, which is

impossible mod 4. )
If m # 6, then we write m = 6 + 2+ 3° « n with 4|n, 3[n, and thus
Up = =Ug (mod V,) = =(a® + 4a® + 3a)b (mod V,) by (21).

Hence, if U, = 22 + ab, we have z? = -ab(a* + 4a®*+4) = -ab(a® + 2)2 (mod V,),

which is impossible since

11

(_Zéﬁﬂ_;i_gl_ = (222) = 1 by (19), (16), (17), and the assumption.
VTZ V'ﬂ
Applying Theorem 1(a) and Theorem 3, we now have
Corollary 3: (Theorem of Finkelstein [3], [9], [1])

F =324+ 1 4iff m = #1, 2, #3, +5.

m

Using an argument similar to that of Theorem 3, we have Theorem 4 and two
immediate corollaries.

Theorem 4: Let b = 1(8). Then, the equation U, = az® + ab, m = 0(2), has only

the solution m = 2.

Corollary 4: Let d = a® + 4, 2*a. Then, the equation U, = az® + a has only
the solution m = 2.

Corollary 5: The diophantine equation x? = a?dz" + 2a%dbz? + (a® + 2)? with
b = 1(8) has only the solution (x, y) = (£(a? + 2), 0).

An argument similar to Theorem 3 will also give us the following extended
result of Theorem 1.

Theorem 5: Let a = 1, 3(8) and b
Uy = 2a2® + b, Uy = 222 + b, m

11

1(8). Then, each of the equations
1(2),

i

has only the solutions m = 1.

Corollary 6: Let a =1, 3(8) and b = 1(8). Then, the equations
x? = 4a’dz" + habdz? + a® and  x? = 4dz" + 4dbz® + a?
have only the solution (x, 2) = (%a, 0).

The following is an extended result of Theorem 3 and is similar to Theorem
5 but with m even.

=1, 3(8) and b = 1(8), or a = 5, 7(8) and b = 5(8). Then,
22% 4+ gb, m = 0(2) has

(a) the solutions m = 2, 4 if d = 5,

Theorem 6: Let a
the equation U, =

(b) only the solution m = 2 in all other cases.
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Proof:

Case 1. Let m = 0(8). If m =0, 22° + ab = 0 is impossible. If m # 0, we
write m = 2+ 3% « »n with 4|n 3*n and therefore Up= 0 (mod V,) by (21). Thus,
if 222 + agb = Up,, we have (223)? = -2ab (mod V,), which is impossible, since

< ;ab) = -1 by (19), (20), (16), (17), and the assumption.
n

Case 2. Let m = 4(8). 1If m = 4, then there exists a solution iff 23% =
ab(a? + 1). Since a? - db? = -4, we have (b, a®> + 1) =1 or 3. But > + 1 #
0(3); therefore, (b, a? + 1) = 1. It is obvious that (a, ») = (a, a + 1) =
So we must have a = ¢?, b = r?>, and a®> + 1 = 2)\?, so that ¢t* + 1 = 2A%2. 1In {6]
W. Ljunggren proved that the diophantine equation Ax? - Byl+ = 1 has at most one
solution in positive numbers x and y. In our case, this is (¢, A\) = (1, 1),
which corresponds to a =1, so b =1 = r? and d =

If m # 4, then we write m = 4 + 2+ 3% -« n with 4|n, 3In, and therefore,
U, = -(a®b + 2ab) (mod V,) by (21).

Hence, if 2z + ab = U,, we have 222 = —ab(a? + 3) = -2bV, (mod V,), which is
impossible, since
-2bV3
| 7 ) = -1 by (19), (20), (16), (17), (24), and the assumption.
” -

Case 3 Let m = 2(4). If m= 2, then 2 = 0 is a solution. Ifm # 2, then
we write m = 2 + 2+ 3%+, with Zln, 3*%, and thus,

U, = -ab (mod V,) by (21).

Hence, if 222 + ab = Upn> we have (22)% = -4ab (mod V,), which is impossible,
since

(:%Qé) = ~1 by (19), (16), (17), and the assumption.
n

The following corollaries are direct results of the previous theorems.
Hence, the proofs are omitted.

Corollary 7: Let a =1, 3(8) and b = 1(8),ora =5, 7(8) and b = 7(8). Then,
the equation x? = 4dz" + 4abdz? + (a® + 2)2 has

(a) two solutioms (x, z) = (%3, 0), (%7, *¥1) if d = 5,

(£(a?® + 2), 0) in all other cases.

L]

(b) only the one solution (x, 2)

Corollary 8: F_=2z° + 1 iff m

m

1, 2, 4.

4. GENERALIZED FIBONACCI NUMBERS OF THE FORM pz® - v

Lemma 1: The generalized Fibonacci numbers U, have the form
Upnt1 = D(fans1(a®) + 1), Uy, = abfy,(a?)
and the generalized Lucas numbers V,, have the form

Vonsr = a92n+1(a2)’ Von = 92n(a2) + 2,
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where f,, g, € Z[a?] for each m€ Z and f have no constant term.

2n+1’ Ion

Proof: U,,41 = b(fons1(a®) + 1). The proof is by induction on n. If n =
0, we have U; = b, and the relation is true for fl(az) = 0. Let us now assume
the proposition is true for all values less than or equal to n. Then we have

Upn+s = @Uspsa + Uspay by (1)
aalypyy + Upy) + Uppyy
(a®> + b(f,,,,(a®) + 1) + aU,, by assumption
(@® + Db(fype1(a®) + 1) + alalsy -y + Upy-y)
(a® + Db(fy,4,(@®) + 1) + a?b(f,,_,(a?) + 1) + al,,_, by
. = b(f2n+3(az) +1) + al, = b(onH(a?‘) +1), assumption

with f,,.3(a?) having no constant term.

]

]

In the same way, we can prove the other cases.

Lemma 2: The following identities hold:

Upns1 = UspsaVon = b (36)
Usn = Usn-1Vons1 — ab (37)
Usn = Usp41Vop_1 + ab (38)
Usn-2 = UznVop-p = ab (39)
Usn-2 = Upn-2Voy + ab (40)
DVnsn = UnoaVy + UnVigs (41)
Vons1 = VnVuyr = (-D7a (42)

Proof of (36): We have 2Uyn+1 = Upp+1Von + UppVaon+1 by (5); thus,

u v, +U,V + 2b

2nxl" 2n 2n - 2n*l

2

U'+nt1 +b =

It is therefore sufficient to show that

UpnVonsr T 2b.= UgpiaVoy (43)
and

UppVop-1 + 2b = Uypy 1V, ‘ (44)

We will prove (43) by induction on n. For n = 0, (43) is true, because
UgV+1 + 2b = Us{Vy. Under the assumption that (43) is true for 7, it is enough
to show that Uzn42Vonss + 2b = Uspy3Vo,. By using (1) and (2), we find that it
is equivalent to Uy,Vy,41 + 2b = Uypny1Vay, which holds by assumption. In the
same way, (44) can be proved.

Proof of (37): By using (5), it is enough to show that

UsnVan = Usp-1Vons1 ~ ab, ' (45)

which can be proved by induction on n with the aid of (1) and (2). Similarly,
(38), (39), and (40) can be proved.
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Proof of (41): We again use induction on n. For n = 0, it must first be
proved that bV, = U,_-1Vy + U,Vy = 2U,_, + aU,. This can be proved by induction
on m. The remainder of the proof is straightforward.

Proof of (42): This follows by induction on n using (8) and (2).
Lemma 3: If b =1, then (Uy, Vipin) |V,-

Proof: By (4), it suffices to show that g|V,, where g = (U,, V,,,). By
(41), g|Uy-1V,. 1If gy = (g, Un-1), then g;|U, and g,|Uy-1, so that g,|U,_,.
Hence, g,|b. But b = 1. Therefore, g, = 1 and g|V,.

Corollary 9: If b =1, then (U,,4y, V,,) = 1.

Proof: Let g be as in Lemma 3, with m = 2n * 1 and n = ¥1, then glV:l or
gla. Since g|U,,.1 and g|a, Lemma 1 implies g|b. However, (a, b) = 1. Hence,
g =1.

Theorem 7: Let b = 1. Then, the equation Up = z?> = b, m = 1(2), has no solu-
tion.

Proof: By (36), we have U,,.,V,, = 2°. Hence, Corollary 9 implies that
Upps1r = 2% and V,, = 25, which is impossible by (28).

Theorem 8: TLet b =1 and a? + 2 = p, p a prime. Then, the equation
Ung=2" -a, m=0(2),

has

(a) the solutions m = -2, 0, 4, 6, if d = 5,

(b) the solutions m = -2, 4, if d = 13,

(c) the solutions m = -2, 0, 6, if a is a perfect square, d # 5,
(d) only the solution m = -2 in all other cases.
Proof:

Case 1. Let m = 4n - 2. By (39, Uy, Vy,-0 = 2%, Lemma 3 implies that
Uans Van-y) |-
Hence, we have two possibilities:
(a) Uy, = W2 and V,,_, = W2 or (b) Uy, = pWi and V,,_ , = pWs.
The first is impossible by (28). The second can be written by (5) as
UV = DHY> Vopop = PW;.
Let n # 0(3). Then equation (10) implies that (U,, V,) =1, and so
U, = pt?, Vy = 12, V,,_, = pW2 (46)
U, = t2, V, = pr?, V,,_, = pH3. (47)

Equation (46) does not possess any solution, since the possible values of #,
by (28), din order for V, to be a perfect square, do not yield a solution of
U, = pt.
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By using (30) and direct computation, we find that (47) has only one solu-
tion, which is n = 2 or m = 6 provided a is a perfect square.

Let n = 0(3). Equation (10) implies that (U,, V,) = 2, and so we have to
check the following subcases:

Uy, = 2pt®, Vg = 2r°, V, _, = pia, (48)
or

Ug, = 2t2%, Vgy = 2pr?, V,,_, = pWa, (n = 3)). (49)
By (29) and the assumption, V;, = 2r? is possible only for A = 0 or A = #2 in
the case d = 5. The value A = 0 implies #n = 0 or m = -2, which gives a solu-

tion to (48). The values A = *2, d =5, do not give a solution, since F

6 =
+8 # 2pt2.

According to (31), the only values of A for which a solution of (49) may
exist are A =2 if d =5, or A =0 and A = *1. Now, A = 0 does not give any
solution, because we would have prz = 1. Similarly, A = *1 does not give any

solution, since we would have V,; = *a(a® + 3) = 2pt?, which is impossible be-
cause p*a and p*(a2 + 3) when @2 + 3 = p + 1. Finally, A = 2, d = 5, does not
give any solution, since Lg = 18 # 2. 3r2.

Case 2. Let m = 4n. By (37), Umpm-1Vin+1 = 2°. Now Lemma 3 implies that
Wy, 1> V2n+l)|p, so we have two possibilities, which are

Upp-1 = Wi Vop+r = W% (50)
or
Upp_1 = Pt2 = Vo2, Vy, 4y = V,r2. (51)

By using (28) and (30), we find that (50) has only the solutions:
(a) m=0, 4, if d = 5,
(b) m= 4, if d = 13,
(¢c) m=0, if a is a perfect square, d # 5.

Using (13) for 2n + 1 = 4) = 1, we have

2Wops1 = =2V _yeqy = 000 = *2V,, (mod V,).

Therefore, since V,,41 = pr? = V,r2, we have (a® + 2)[V11 or p|a, which is im-

possible. Thus, (51) has no solution.
Corollary 10: TFor each d = a® + 4, a = 1(2), the diophantine equation
x? = dz* - 2dz® + a®
has no solution.
Corollary 11: Let d = a®> + 4 and a? + 2 = p, where p is a prime. Then, the
diophantine equation x? = dz" - 2adz? + (a? + 2)? has:
(a) Four solutions, (x, z) = (*3, 0), (£2, *1), (%7, *2), (*18, #3), if d = 5.
(b) Two solutions, (x, z) = (11, 0), (*119, *6), if d = 13.

(c) Three solutions, (x, z) = (x(a® + 2), 0), (£2, *t), (*(a® + 6a" + 9a%+2),
tt(a? + 2)), if a = t? is a perfect square.

(d) Only the solution (x, z) = (#(a® + 2), 0) in all other cases.

When @ = 1 in Theorem 8, we have the following result, found in [8].
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Corollary 12: F_ =32 -1 iff m = -2, 0, 4, 6.

m

The next result is an extension of Theorem 7.

Theorem 9: Let p = 1. Then, the equation U, = 22% - b, m = 1(2), has only the
solutions m = *1.

Proof: Equatiop (36) implies that U,,.,V,, - b = 232 - b, for m = 4n £ 1.
Hence, U,,.+1V,, = 222, By Corollary 9,

Upper = 282, Vyp = 12 oF Upysr = t2, V,, = 202,
Now V,, = r® is impossible by (28) and the second case implies, using (30) and
(29), that n = 0 or m = %1,

The following result is an extended parallel of Theorem 8.

Theorem 10: Let b =1 and ¢? + 2 = p, where p is a prime. Then, the equation
Uy = 222 - a, m = 0(2) has

(a) the solutions m = -2, 2 if a is a perfect square,
(b) only the solution m = -2 in all other cases.
Proof:

Case 1. Let m = 4n - 2. Equation (39) implies that UsnVsyn-» = 22%2. But,
by Lemma 3, (Upys Von_»)|V,, where V, = p, so that (U, Voy_) =1 or p. If
(Us,5 Vy,_») =1, then we must have

Upy = 2t%, Vy,_p =22 or U,, =t*, V,, , = 2r°.

The first case is impossible by (28). The second case has, by (30) and (29),
only the solution n = 1 or m = 2 if g is a perfect square.

Now, let (Usps Vin-2) = p. We then have to check two possibilities:

Upw = P25 Viypop = 2027 or Uy, = 2pt%, Vyy_, = pri.

In the first case we must have, by (9), n = 1(3), say n = 3\ + 1. By (5),
we also have U,V, = pt?®. But (U,, V,) = l; therefore, we have

Uy = pW2, Vy, = W2, V,,_, = 2pr?, (52)

]

or
Un = W%’ Vn = pW§, V2n—-2 = prz“ (53)

Equation (52) has no solution since, by (28), the only solution of V, = W% is
n =1, for which U, = pW? is impossible.. Equation (53) has no solution either
since, by (30), the only possible value for n of U = W% “8 n =1, but then
V, = a = pW3, which is impossible.

For the second case we must have, by (9), 3|n, say n = 3\A. By (5), we have
Ugy Vyy = Zptz. Since, by (10), Uz, Vi) = 2, we must check the following
subcases:

Usy = bpri, vy = 27}, Vo, oy = pr?; (54)
Us, = (2r)?, Vi, = 2pr;, Von-» = p7%; (55)
Usy, = ZPP%’ Véx = (2%2)2, Voo = pr?; (56)
Ugy = 2r§, Vi = 4pr§, Vo o = pr?. (57)
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By (29), the only possible solutions of (54) are A = 0 for each d, and A =
+2 if d = 5. We know A = 0 is a solution, since U; = 0 = 4pr? with r; = 0 and
V., = pr? = Vérz with r» = =*1.

Since Fig = *8 # 4 3 r%, A = +2 is not a solution of (54). By (30), the
only possible solutions of (55) are A =0, and A = 4 if d = 5. It is obvious
that A = 0 is not a solution, since V, = 2 # 2« V%. Neither is A = 4 a solu-
tion, since Ly, = 322 # 2+ 3+ r2. In the same way, we can prove that (56) and
(57) have no solutions. The possible values A = *1 in (57) do not yield a so-
lution, since p = a? + 2*@(&2 + 3) =V.,.

Case 2. Let m = 4n. By (37), U,,.1V,u4+1 = 23°. Using Lemma 3 and the
assumption, (U,,_,, V,,,,) =1 or p.
If (Uy, .15 Vope1) = 1, we have

Uppoq = 287, V = r’ (58)

2n+1
or

Upn-1 = t%5 Vypyy = 2%, (59)
By (31) and (28), (58) has no solution. By (29), (59) has no solution.
If (Uy,_15 Vy,pey) = p, we have

Uppor = szi’ Vopser = Pzg (60)
or

Upnor = D235 Vypyr = 2p235. (61)

Neither (60) nor (61) has a solution by using a proof similar to that given at
the end of Theorem 8.

The following are immediate consequences of the preceding theorems.

Corollary 13: If d = a2 + 4, a = 1(2), then the equation x? = 4dz* - 4dz? + a?
has only the solution (x, z) = (za, 0).

Corollary 1h: Tet d=a® + 4 and a® + 2 = p, where p is a prime. Then, the
equation x2 = 4dz"% - 4adz? + (a? + 2)? has

(a) two solutioms, (x, 2) = (£(a® + 2), 0), (#(a® + 2), tr) if a is a perfect
square, a = r<,

(b) only the one solution (x, z) = (x(a® + 2), 0) in all other cases.

Corollary 15: F, = 2z% - 1 iff m = £1, %2,

5. GENERALIZED LUCAS NUMBERS OF THE FORM pz? *+ v

Theorem 11: The equation V, = 2% + a, m = 1(2), has only the solutionm = 1.

Proof:

Case 1. Let m = 4n - 1. By (42), Van-1Vsn = 8°. Since (Vopn-1, Van) = 1,
we have V,,_, = t?, V,, = r?, which is impossible by (28).

Case 2. Let m = 4n + 1. By (42), V,,Vons1— 2a = 2°. Hence, using (8) and
(42), we have

W - 2¢-D"HV,V,,, - (-D"a} - 2a = 2%,
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which implies that VM, = 2® with M, = V2V,,, - (-D"aV, - 2(-1)"V,,,. Let p
be an odd prime and let pe”Vn. Since (Vyq1, V) =+ = (Vy, Vo) = (a, 2) =1,

it follows that pf[M,. This implies e = 0(2) and therefore V, = #2 or V, = 2t2.

Using (28) and (29), we find that the possible solutions are m = 1, 5, 13, 25,
-23 if d=5, m=1,13 ifd =13, m = 1,5, 25,-234if d =29, m = 1,541f a =
and d # 5, m = 1 otherwise. Obviously, m = 1 is a solution. For m = 5 and a =

2, we have (a2 + 2)% + @?® = r?, which is impossible because both a and a® + 2
are odd. By a direct computation of each corresponding Vs in all other cases,
we see that no other solutions exist. Note that for 4 = 29,

Vy,g = 766628450142675125.

Following an argument similar to Theorem 11, we can prove Theorem 12.

Theorem 12: The equation ¥, = 22 - a, m = 1(2) has only the solution m = -1.

Corollary 16: 1f p = 1, then the diophantine equations
dy®>=2z" + 2az%+a® + 4 and dy® = 3" - 2az® + a® + 4

have only the solution (y, z) = (¥l, 0).
The next two theorems are similar to the last two, but m is even.

Theorem 13: Let p be an odd prime. Then, the equation V, = 2> + (p - 2), m =
0(2) has
(a) the solution m = 0 if p = 3,

(b) the solutions m = %2, *4 if 4 = 5 and p = 5,
r
(¢) at most [] (s, + 1) + 1 solutions if
i=1

- = 81 o 52 6 woo s 8
p-4=q7-q q:
as its unique factorization.
Proof:

Case 1. Let m = 4n. By (8), V3, - 2° = p, which implies that

p+1 _p+1
VZ?’L = i—T or VZYL = 2 by (19)=
1f p = 3, then V,, = 2, which implies that n = 0 or m= 0 is a solution with
z=0. If p=25, then V3, = 3, which can only be true if » = %l and d =5 or
m=*4 and d = 5. If p > 5, there exists at most one solution.

Case 2. Let m=4n+2. By (8), V3,1 ~2° =p-4. If p = 3, then Vyps1 = O,
which is impossible. If p = 5, then Vj,41 = *1 and the only possibilities for
solutions are n = 0 or -1 and d = 5 or m = #2 and d = 5. If p > 5, then

d, +d,
Vops1 = s d, >0, d, >0,

where (d,, d,) runs over all the divisors of p - 4 with dyd, = p - 4. Since the
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r
number of divisors of p - 4 is T[] (s; + 1), the theorem is proved.
=1

In the same way, we can prove

Theorem 14: Let p be an odd prime. Then, the equation V, = 2% - (p - 2), m =

0(2), has

(a) the solutions m = 2, d = 5, if p = 3,

(b) no solution if p =5,

r
%—[Il(si + 1) - 1] + 2 solutions if p - 4 is a perfect square
i=1

(c) at most

N =

where p -
Corollary 17:

(i) The
(a)
(b)

(c)

(ii) The
(a)
(b)

(c)

Corollary 18:

r
[1(s; + 1) + 2 solutions if p - 4 is not a perfect square,
=1

4 =q3tq;? ... qir as its unique factorization.

diophantine equation 2% + 2(p -~ 2)2% + p(p - 4) = dy? has
one solution for each d if p = 3,

four solutions for d = 5 if p = 5,

at most }il(si + 1) + 1 solutions if p > 5 and p - 4 = qfl .. qir
as its unique factorization.
diophantine equation z* - 2(p - 2)2% + p(p - 4) = dy® has
one solution for each d is p = 3,
no solution for each d if p = 5,

1.z

iw;zh(si + 1) - l] + 2 solutions if p - 4 is a
at most perfect square

% fi(si + 1) + 2 solutions if p - 4 is not a

=1 perfect square,

where p > 5 and p - 4 = g7* ... g2 as its unique factorization.

The following can be found in [4] and [8]:

L,=2>+1iff m =0, 1,

Lp=2%2-1iff m = -1, %2,

By an argument similar to Theorems 11 and 12, we can prove

Theorem 15:

(i) The equation ¥,

(ii) The equation V, = 222 - a, m = 1(2), has
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(a) the solutions m = *1 is g is a perfect square,
(b) only the solution m = -1 in all other cases.

By using the method of Cohn, as before, we can also prove

Theorem 16: L, =22% + 1, m = 0(2), iff m = 2,

Corollary 19: L, = 222+ 1 iff m

Ln,=22% -1, m= 0(2), iff m = *4.

1]
I+
N
M
—
M

Lp=22% -1 iff m = 1, #4.
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