JANNIS A. ANTONIADIS University of Thessaloniki, Greece

(Submitted May 1983)

1. INTRODUCTION

The object of this paper is to generalize the results of Finkelstein [3], [4], and Robbins [8] about the Fibonacci and Lucas numbers of the form $z^2 \pm 1$, by using the method of Cohn [2]. Some results which contain the Fibonacci and Lucas numbers of the form $2z^2 \pm 1$ as special cases are also given.

In all cases we obtain information about the solution of an infinite class of biquadratic diophantine equations, with the exception of Theorems 8 and 10, where it is not known if the class considered is finite or infinite [5].

The following notation will be used:

- F_m , L_m for the (usual) Fibonacci, Lucas numbers.
- $a \equiv b \pmod{c}$ or $a \equiv b(c)$ for congruences.
- (a/b) for the Jacobi quadratic symbol.
- The solutions $(\pm x, \pm y)$ of a diophantine equation are counted *once* if x and y possess only even exponents.

2. PRELIMINARIES

Definition 1: Let $d \in \mathbb{N}$, $d \neq 0$, and d not be a square.

- (i) d will be called of the $first \ kind$ if the Pellian equation $x^2 dy^2 = -4$ has a solution with both x and y odd integers.
- (ii) d will be called of the second kind if d is not of the first kind and the Pellian equation $x^2 dy^2 = 4$ has a solution with both x and y odd integers.

Remark: A necessary but not sufficient condition for d to be of the first or second kind is $d \equiv 5(8)$. A counterexample is d = 37.

Definition 2: Let $d \in \mathbb{N}$ be of the first or the second kind with d = 5 + 8v. Let $\alpha = \frac{1}{2}(\alpha + b\sqrt{d})$ be the fundamental solution (see [7]) of $x^2 - dy^2 = -4$ or $x^2 - dy^2 = 4$ and $\beta = \frac{1}{2}(\alpha - b\sqrt{d})$. We define, for all integers n,

$$\begin{cases} U_n = d^{-1/2}(\alpha^n - \beta^n) \\ V_n = \alpha^n + \beta^n. \end{cases}$$

It is easy to see that U_0 = 0, U_1 = b, V_0 = 2, V_1 = α , and U_n , V_n are integers for each $n \in \mathbf{Z}$.

Supported by the Deutsche Forschungsgemeinschaft.

The terms of the sequence $\{U_n\}$, $n\in\mathbb{N}$ ($\{V_n\}$, $n\in\mathbb{N}$) will be called *generalized Fibonacci* (Lucas) numbers.

<u>Remarks</u>: (i) From Definitions 1 and 2, it follows that both α and b must be odd.

(ii) If b=1, then our definition of generalized Fibonacci numbers agrees with the Fibonacci polynomials $U_n=F_n(\alpha)$, α odd, but in general, b can be different from one as for example in the case d=61, $\alpha=39$, b=5.

From now on, d will always be of the first kind with the fundamental solution $\frac{1}{2}(\alpha + b\sqrt{d})$ of the corresponding Pellian equation $x^2 - dy^2 = -4$. According to [2], the following identities hold:

$$U_{n+2} = \alpha U_{n+1} + U_n, (1)$$

$$V_{n+2} = aV_{n+1} + V_n, (2)$$

$$U_{-n} = (-1)^{n-1} U_n, (3)$$

$$V_{-n} = (-1)^n V_n, (4)$$

$$2U_{m+n} = U_m V_n + U_n V_m, (5)$$

$$2V_{m+n} = dU_m U_n + V_m V_n, (6)$$

$$(-1)^n 4 = V_n^2 - dU_n^2, (7)$$

$$V_n^2 = V_{2n} + (-1)^n \cdot 2, \tag{8}$$

$$2 | U_n \text{ iff } 2 | V_n \text{ iff } 3 | n, \tag{9}$$

$$(U_n, V_n) = \begin{cases} 1 & \text{if } 3 \nmid n \\ 2 & \text{if } 3 \mid n, \end{cases}$$
 (10)

$$V_{n+12} \equiv V_n \pmod{8}, \tag{11}$$

$$2U_{m+2N} \equiv (-1)^{N-1} 2U_m \pmod{V_N}, \tag{12}$$

$$2V_{m+2N} \equiv (-1)^{N-1} 2V_m \pmod{V_N}, \tag{13}$$

$$2U_{m+2N} \equiv (-1)^{N} 2U_{m} \pmod{U_{N}}, \tag{14}$$

$$2V_{m+2N} \equiv (-1)^N 2V_m \pmod{U_N}, \tag{15}$$

$$V_n \equiv 2 \pmod{\alpha} \text{ if } 2 \mid n, \tag{16}$$

$$V_n \equiv (-1)^{n/2} \cdot 2 \pmod{b} \text{ if } 2 \mid n, \tag{17}$$

$$b \equiv 1(4), \tag{18}$$

and, furthermore, for $k \in \mathbf{Z}$, with $2 \mid k$, $3 \nmid k$,

$$V_k > 0 \text{ and } V_k \equiv \begin{cases} 3(8) & \text{if } k \equiv 2(4) \\ 7(8) & \text{if } 4 \mid k, \end{cases}$$
 (19)

$$\left(\frac{2}{V_L}\right) = (-1)^{k/2},\tag{20}$$

$$U_{m+2k} \equiv -U_m \pmod{V_k}, \tag{21}$$

$$V_{m+2k} \equiv -V_m \pmod{V_k}, \tag{22}$$

200 [Aug.

$$\left(\frac{\alpha}{V_{\nu}}\right) = \left(\frac{-2}{\alpha}\right),$$
 (23)

$$\left(\frac{V_3}{V_k}\right) = \left(\frac{-2}{\alpha}\right),\tag{24}$$

$$\left(\frac{V_k}{U_5}\right) = -\left(\frac{2}{b}\right)$$
 provided that $5 \nmid k$, (25)

the general solution of
$$x^2 - dy^2 = -4$$
 is $x = V_{2n+1}$, $y = U_{2n+1}$, (26)

the general solution of
$$x^2 - dy^2 = 4$$
 is $x = V_{2n}$, $y = U_{2n}$, (27)

if
$$V_n = x^2$$
, then
$$\begin{cases} n = 1 & \text{if } \alpha = t^2 \text{ and } d \neq 5\\ n = 1, 3 & \text{if } d = 5\\ n = 3 & \text{if } d = 13, \end{cases}$$
 (28)

if
$$V_n = 2x^2$$
, then
$$\begin{cases} n = 0 \\ \text{and} \\ n = \pm 6 \text{ if } d = 5, 29, \end{cases}$$
 (29)

if
$$U_n = x^2$$
, then
$$\begin{cases} n = 0 \\ n = 12 & \text{if } d = 5 \\ n = 2 & \text{if } a = t^2 \text{ and } b = r^2 \\ n = \pm 1 & \text{if } b = r^2, \end{cases}$$
 (30)

if
$$U_n = 2x^2$$
, then
$$\begin{cases} n = 0 \\ n = 6 & \text{if } d = 5 \\ \text{and possibly the solutions } n = \pm 3. \end{cases}$$
 (31)

We also need some values for U_n and V_n :

n	U_n	V_n
0	0	2
1	Ъ	α
2	ab	$a^2 + 2$
3	$(a^2 + 1)b$	$a^3 + 3a$
4	$(a^3 + 2a)b$	$a^4 + 4a^2 + 2$
5	$(a^4 + 3a^2 + 1)b$	$a^{5} + 5a^{3} + 5a$
6	$(a^5 + 4a^3 + 3a)b$	$a^6 + 6a^4 + 9a^2 + 2$

3. GENERALIZED FIBONACCI NUMBERS OF THE FORM $\mu z^2 + \nu$

Theorem 1: Let $\alpha \equiv 1$, 3(8) and $b \equiv 1$ (8). Then the equation $U_m = \alpha z^2 + b$, $m \equiv 1$ (2),

has

- (a) the solutions $m = \pm 1$, ± 3 , and ± 5 if d = 5,
- (b) the solutions $m = \pm 1$, ± 5 if d = 13,
- (c) the solutions $m = \pm 1$, ± 3 if a and b are both perfect squares, $d \neq 5$,
- (d) only the solutions $m = \pm 1$ in all other cases.

<u>Proof</u>: It is sufficient by (3) to consider only the cases $m \equiv 1(8)$, 3(16), and $\overline{5(16)}$.

<u>Case 1</u>. Let $m \equiv 1(8)$. For m = 1, z = 0 is a solution. If $m \neq 1$, then we write $m = 1 + 2 \cdot 3^s \cdot n$, where $4 \mid n$, $3 \nmid n$, and $az^2 + b = U_m \equiv -U_1 \pmod{V_n}$ by (21). Thus $(az)^2 \equiv -2ab \pmod{V_n}$. But

$$\left(\frac{-2ab}{V_n}\right) = -1$$

by (19), (20), (16), (17), and the assumption. Hence, $U_m \neq \alpha z^2 + b$.

<u>Case 2</u>. Let $m \equiv 3(16)$. If m = 3, then $az^2 + b = (a^2 + 1)b$ iff $z^2 = ab$ iff a and b are both perfect squares, since (a, b) = 1.

If $m \neq 3$, then we write $m = 3 + 2 \cdot 3^s \cdot n$, where $8 \mid n$, $3 \nmid n$, and $az^2 + b = U_m \equiv -U_3 \pmod{V_n} \equiv -(a^2 + 1)b \pmod{V_n}$, by (21). Thus $(az)^2 \equiv -abV_2 \pmod{V_n}$.

By applying (13) repeatedly, we obtain

$$2V_n \equiv -2V_{n-4} \equiv 2V_{n-8} \equiv \cdots \equiv 2V_0 \equiv 4 \pmod{V_2}, \tag{32}$$

which by (19) implies $V_n \equiv 2 \pmod{V_2}$. Thus $(V_n, V_2) = (2, V_2) = 1$ and

$$\left(\frac{V_2}{V_n}\right) = -\left(\frac{V_n}{V_2}\right) = -\left(\frac{2}{V_2}\right) = \pm 1.$$

Now $(-abV_2/V_n)$ can be calculated to be -1 by using (19), (16), (17), (33), and the assumption. Hence, $U_m \neq az^2 + b$.

Case 3. Let m = 5(16). If m = 5, then there exists a solution iff $\alpha z^2 + b = (\alpha^4 + 3\alpha^2 + 1)b$ iff $z^2 = \alpha(\alpha^2 + 3)b$. Since b is odd and $b \mid U_3$,

$$(b, V_3)/(U_3, V_3) = 2,$$

which implies $(b, V_3) = 1$. Hence,

$$z^2 = a(a^2 + 3)b = V_3b$$
 iff $b = r^2$ and $a(a^2 + 3) = z_1^2$.

By [1], the last equation has only the solutions $(z_1, \alpha) = (0, 0)$, $(\pm 2, 1)$, $(\pm 6, 3)$, $(\pm 42, 12)$. Since we have $\alpha \equiv 1(2)$, the only possible solutions are $(z_1, \alpha) = (\pm 2, 1)$, $(\pm 6, 3)$. For $\alpha = 1$, we have $b = 1 = r^2$ and d = 5. For $\alpha = 3$, we have $b = 1 = r^2$ and d = 13.

If $m \neq 5$, then $m = 5 + 2 \cdot 3^{s} \cdot n$ with $8 \mid n$, $3 \nmid n$, and thus

$$U_m \equiv -U_5 \pmod{V_n} \equiv -(\alpha^4 + 3\alpha^2 + 1)b \pmod{V_n}$$
 by (21).

Applying (15) repeatedly and using (4), we have

$$2V_n \equiv -2V_{n-6} \equiv 2V_{n-12} \equiv \cdots \equiv \pm 2V_2 \pmod{U_3}. \tag{34}$$

Since $(V_n, V_2) = 1$ implies $(2V_n, U_3) = 2$, we see that

$$\left(\frac{U_3/2}{V_n}\right) = \left(\frac{(\alpha^2 + 1)/2}{V_n}\right) \left(\frac{b}{V_n}\right) = \left(\frac{V_n}{(\alpha^2 + 1)/2}\right) \left(\frac{b}{V_n}\right) \\
= \left(\frac{\pm V_2}{(\alpha^2 + 1)/2}\right) \left(\frac{b}{V_n}\right) = \left(\frac{b}{V_n}\right). \tag{35}$$

Now, if $az^2 + b = U_m$, we have

$$(ax)^2 \equiv -a(a^4 + 3a^2 + 2)b \equiv -abV_2U_3 \pmod{V_n}$$
,

which is impossible because $(-abV_2U_3/V_n) = -1$ by (19), (16), (17), (33), (35), and the assumption. Hence, $U_m \neq az^2 + b$.

202 [Aug.

Corollary 1: The diophantine equation $x^2 = a^2 dz^4 + 2abdz^2 + a^2$ with $a \equiv 1$, 3(8) and $b \equiv 1(8)$, has

- (a) three solutions $(x, y) = (\pm 1, 0), (\pm 4, \pm 1), (\pm 11, \pm 2)$ if d = 5,
- (b) two solutions $(x, z) = (\pm 3, 0), (\pm 393, 16)$ if d = 13,
- (c) two solutions $(x, z) = (\pm a, 0)$, $(\pm a(a^2 + 3), \pm tr)$, where $a = t^2$ and $b = r^2$ are both perfect squares, $d \neq 5$,
- (d) only one solution $(x, z) = (\pm \alpha, 0)$ in all other cases.

Proof: This follows directly from (26), Theorem 1, and Definition 2.

Following the arguments of Theorem 1 and Corollary 1, we have

Theorem 2: Let $b \equiv 1(8)$. Then the equation $U_m = z^2 + b$, $m \equiv 1(2)$, has

- (a) the solutions $m = \pm 1$, ± 3 , ± 5 , if d = 5,
- (b) the solutions $m = \pm 1$, ± 3 , if $b = r^2$, $d \neq 5$,
- (c) only the solutions $m = \pm 1$ in all other cases,

Corollary 2: The diophantine equation $x^2 = dz^4 + 2dbz^2 + a^2$ with $b \equiv 1(8)$ has

- (a) three solutions $(x, z) = (\pm 1, 0), (\pm 4, \pm 1), (\pm 11, \pm 2), \text{ if } d = 5,$
- (b) two solutions $(x, z) = (\pm a, 0), (\pm a(a^2 + 3), \pm ar)$ if $b = r^2, d \neq 5$,
- (c) only one solution $(x, z) = (\pm a, 0)$ in all other cases.

We now show the following results, which are similar to the above but with m even.

Theorem 3: Let $\alpha \equiv 1$, 3(8) and $b \equiv 1$ (8) or $\alpha \equiv 5$, 7(8) and $b \equiv 5$ (8). Then the equation $U_m = z^2 + ab$, $m \equiv 0$ (2), has only the solution m = 2.

Proof:

Case 1. Let $m \equiv 0(4)$. No solution exists for m = 0; but if $m \neq 0$, then we write $m = 2 \cdot 3^s \cdot n$ with $2 \mid n$, $3 \nmid n$, and thus $U_m \equiv 0 \pmod{V_n}$ by (21). If $U_m = z^2 + ab$ for some m, then we have $z^2 \equiv -ab \pmod{V_n}$, which is impossible, since $(-ab/V_n) = -1$ by (19), (16), (17), and the assumption.

<u>Case 2</u>: Let $m \equiv 2(8)$. For m = 2, we have the solution z = 0. If $m \neq 2$, then we write $m = 2 + 2 \cdot 3^s \cdot n$ with $4 \mid n$, $3 \nmid n$, and thus

$$U_m \equiv -U_2 \pmod{V_n} \equiv -ab \pmod{V_n}$$
 by (21),

Thus, if $U_m = z^2 + ab$, we should have $z^2 \equiv -2ab \pmod{V_n}$, which is impossible, since $(-2ab/V_n) = -1$ by (19), (20), (16), (17), and the assumption.

<u>Case 3</u>: Let m = 6(8). If m = 6, we have a solution iff $z^2 + ab = (a^5 + 4a^3 + 3a)b$ iff $z^2 = a(a^4 + 4a^2 + 2)b = aV_4b$.

But $b \mid U_n$; hence,

$$(b, V_4)/(U_4, V_4) = 1$$
 by (10).

Therefore, it follows that $b=t^2$, $\alpha=r^2$, and $a^4+4a^2+2=V_4=s^2$, which is impossible mod 4.

If $m \neq 6$, then we write $m = 6 + 2 \cdot 3^s \cdot n$ with $4 \mid n$, $3 \nmid n$, and thus

$$U_m \equiv -U_6 \pmod{V_n} \equiv -(\alpha^5 + 4\alpha^3 + 3\alpha)b \pmod{V_n}$$
 by (21).

Hence, if $U_m = z^2 + ab$, we have $z^2 \equiv -ab(a^4 + 4a^2 + 4) \equiv -ab(a^2 + 2)^2 \pmod{V_n}$, which is impossible since

$$\left(\frac{-ab(a^2+2)^2}{V_n}\right)=\left(\frac{-ab}{V_n}\right)=-1$$
 by (19), (16), (17), and the assumption.

Applying Theorem 1(a) and Theorem 3, we now have

Corollary 3: (Theorem of Finkelstein [3], [9], [1])

$$F_m = z^2 + 1$$
 iff $m = \pm 1, 2, \pm 3, \pm 5$.

Using an argument similar to that of Theorem 3, we have Theorem 4 and two immediate $\operatorname{corollaries}$.

Theorem 4: Let $b \equiv 1(8)$. Then, the equation $U_m = az^2 + ab$, $m \equiv 0(2)$, has only the solution m = 2.

Corollary 4: Let $d = a^2 + 4$, $2 \nmid a$. Then, the equation $U_m = az^2 + a$ has only the solution m = 2.

Corollary 5: The diophantine equation $x^2 = a^2 dz^4 + 2a^2 dbz^2 + (a^2 + 2)^2$ with $\overline{b} = 1(8)$ has only the solution $(x, y) = (\pm (a^2 + 2), 0)$.

An argument similar to Theorem 3 will also give us the following extended result of Theorem 1.

Theorem 5: Let $\alpha \equiv 1$, 3(8) and $b \equiv 1(8)$. Then, each of the equations $U_m = 2az^2 + b$, $U_m = 2z^2 + b$, $m \equiv 1(2)$,

has only the solutions $m = \pm 1$.

Corollary 6: Let $\alpha \equiv 1$, 3(8) and $b \equiv 1$ (8). Then, the equations $x^2 = 4a^2dz^4 + 4abdz^2 + a^2$ and $x^2 = 4dz^4 + 4dbz^2 + a^2$

have only the solution $(x, z) = (\pm a, 0)$.

The following is an extended result of Theorem 3 and is similar to Theorem 5 but with m even.

Theorem 6: Let $\alpha \equiv 1$, 3(8) and $b \equiv 1$ (8), or $\alpha \equiv 5$, 7(8) and $b \equiv 5$ (8). Then, the equation $U_m = 2z^2 + \alpha b$, $m \equiv 0$ (2) has

- (a) the solutions m = 2, 4 if d = 5,
- (b) only the solution m = 2 in all other cases.

Proof:

Case 1. Let $m \equiv 0(8)$. If m = 0, $2z^2 + ab = 0$ is impossible. If $m \neq 0$, we write $m = 2 \cdot 3^s \cdot n$ with $4 \mid n$, $3 \nmid n$, and therefore $U_m \equiv 0 \pmod{V_n}$ by (21). Thus, if $2z^2 + ab = U_m$, we have $(2z)^2 \equiv -2ab \pmod{V_n}$, which is impossible, since

$$\left(\frac{-2ab}{V_n}\right)$$
 = -1 by (19), (20), (16), (17), and the assumption.

<u>Case 2</u>. Let $m \equiv 4(8)$. If m=4, then there exists a solution iff $2z^2=ab(a^2+1)$. Since $a^2-db^2=-4$, we have $(b, a^2+1)=1$ or 3. But $a^2+1\not\equiv 0(3)$; therefore, $(b, a^2+1)=1$. It is obvious that (a, b)=(a, a+1)=1. So we must have $a=t^2$, $b=r^2$, and $a^2+1=2\lambda^2$, so that $t^4+1=2\lambda^2$. In [6] W. Ljunggren proved that the diophantine equation $Ax^2-By^4=1$ has at most one solution in positive numbers x and y. In our case, this is $(t, \lambda)=(\pm 1, \pm 1)$, which corresponds to a=1, so $b=1=r^2$ and d=5.

If $m \neq 4$, then we write $m = 4 + 2 \cdot 3^s \cdot n$ with $4 \mid n$, $3 \nmid n$, and therefore,

$$U_m \equiv -(\alpha^3 b + 2\alpha b) \pmod{V_n}$$
 by (21).

Hence, if $2z^2 + ab = U_m$, we have $2z^2 \equiv -ab(a^2 + 3) \equiv -2bV_3 \pmod{V_n}$, which is impossible, since

$$\left(\frac{-2bV_3}{V_n}\right) = -1$$
 by (19), (20), (16), (17), (24), and the assumption.

<u>Case 3</u>. Let $m \equiv 2(4)$. If m = 2, then z = 0 is a solution. If $m \neq 2$, then we write $m = 2 + 2 \cdot 3^s \cdot n$, with $2 \mid n$, $3 \nmid n$, and thus,

$$U_m \equiv -ab \pmod{V_n}$$
 by (21).

Hence, if $2z^2 + ab = U_m$, we have $(2z)^2 \equiv -4ab \pmod{V_n}$, which is impossible, since

$$\left(\frac{-4ab}{V_n}\right)$$
 = -1 by (19), (16), (17), and the assumption.

The following corollaries are direct results of the previous theorems. Hence, the proofs are omitted.

Corollary 7: Let $\alpha = 1$, 3(8) and b = 1(8), or $\alpha = 5$, 7(8) and b = 7(8). Then, the equation $x^2 = 4dz^4 + 4abdz^2 + (a^2 + 2)^2$ has

- (a) two solutions $(x, z) = (\pm 3, 0), (\pm 7, \pm 1)$ if d = 5,
- (b) only the one solution $(x, z) = (\pm(\alpha^2 + 2), 0)$ in all other cases.

Corollary 8: $F_m = 2z^2 + 1$ iff $m = \pm 1, 2, 4$.

4. GENERALIZED FIBONACCI NUMBERS OF THE FORM $\mu z^2 - \nu$

Lemma 1: The generalized Fibonacci numbers U_m have the form

$$U_{2n+1} = b(f_{2n+1}(\alpha^2) + 1), \quad U_{2m} = \alpha b f_{2n}(\alpha^2)$$

and the generalized Lucas numbers \mathcal{V}_{m} have the form

$$V_{2n+1} = ag_{2n+1}(a^2), V_{2n} = g_{2n}(a^2) + 2,$$

where f_m , $g_m \in \mathbf{Z}[a^2]$ for each $m \in \mathbf{Z}$ and f_{2n+1} , g_{2n} have no constant term.

<u>Proof</u>: $U_{2n+1} = b(f_{2n+1}(a^2) + 1)$. The proof is by induction on n. If n = 0, we have $U_1 = b$, and the relation is true for $f_1(a^2) \equiv 0$. Let us now assume the proposition is true for all values less than or equal to n. Then we have

$$\begin{split} &U_{2n+3} = \alpha U_{2n+2} + U_{2n+1} & \text{by (1)} \\ &= \alpha (\alpha U_{2n+1} + U_{2n}) + U_{2n+1} \\ &= (\alpha^2 + 1)b(f_{2n+1}(\alpha^2) + 1) + \alpha U_{2n} & \text{by assumption} \\ &= (\alpha^2 + 1)b(f_{2n+1}(\alpha^2) + 1) + \alpha (\alpha U_{2n-1} + U_{2n-2}) \\ &= (\alpha^2 + 1)b(f_{2n+1}(\alpha^2) + 1) + \alpha^2 b(f_{2n-1}(\alpha^2) + 1) + \alpha U_{2n-2} & \text{by} \\ &= \cdots = b(f_{2n+3}(\alpha^2) + 1) + \alpha U_0 = b(f_{2n+3}(\alpha^2) + 1), \end{split}$$

with $f_{2n+3}(\alpha^2)$ having no constant term.

In the same way, we can prove the other cases.

Lemma 2: The following identities hold:

$$U_{4n\pm 1} = U_{2n\pm 1}V_{2n} - b (36)$$

$$U_{4n} = U_{2n-1}V_{2n+1} - ab (37)$$

$$U_{4n} = U_{2n+1}V_{2n-1} + ab (38)$$

$$U_{4n-2} = U_{2n}V_{2n-2} - ab (39)$$

$$U_{4n-2} = U_{2n-2}V_{2n} + ab (40)$$

$$bV_{m+n} = U_{m-1}V_n + U_mV_{n+1} (41)$$

$$V_{2n+1} = V_n V_{n+1} - (-1)^n \alpha \tag{42}$$

<u>Proof of (36)</u>: We have $2U_{4n\pm 1} = U_{2n\pm 1}V_{2n} + U_{2n}V_{2n\pm 1}$ by (5); thus,

$$U_{4n\pm 1} \, + \, b \, = \frac{U_{2n\pm 1} V_{2n} \, + \, U_{2n} V_{2n\pm 1} \, + \, 2b}{2} \, . \label{eq:u4n\pm 1}$$

It is therefore sufficient to show that

$$U_{2n}V_{2n+1} + 2b = U_{2n+1}V_{2n} (43)$$

and

$$U_{2n}V_{2n-1} + 2b = U_{2n-1}V_{2n}. (44)$$

We will prove (43) by induction on n. For n=0, (43) is true, because $U_0V_{\pm 1}+2b=U_{\pm 1}V_0$. Under the assumption that (43) is true for n, it is enough to show that $U_{2n+2}V_{2n+3}+2b=U_{2n+3}V_{2n}$. By using (1) and (2), we find that it is equivalent to $U_{2n}V_{2n+1}+2b=U_{2n+1}V_{2n}$, which holds by assumption. In the same way, (44) can be proved.

$$U_{2n}V_{2n} = U_{2n-1}V_{2n+1} - ab, (45)$$

which can be proved by induction on n with the aid of (1) and (2). Similarly, (38), (39), and (40) can be proved.

<u>Proof of (41)</u>: We again use induction on n. For n=0, it must first be proved that $bV_m=U_{m-1}V_0+U_mV_1=2U_{m-1}+\alpha U_m$. This can be proved by induction on m. The remainder of the proof is straightforward.

Proof of (42): This follows by induction on n using (8) and (2).

Lemma 3: If b = 1, then $(U_m, V_{m \pm n}) | V_n$.

Proof: By (4), it suffices to show that $g \mid V_n$, where $g = (U_m, V_{m+n})$. By (41), $g \mid U_{m-1}V_n$. If $g_1 = (g, U_{m-1})$, then $g_1 \mid U_m$ and $g_1 \mid U_{m-1}$, so that $g_1 \mid U_{m-2}$. Hence, $g_1 \mid b$. But b = 1. Therefore, $g_1 = 1$ and $g \mid V_n$.

Corollary 9: If b = 1, then $(U_{2n\pm 1}, V_{2n}) = 1$.

<u>Proof:</u> Let g be as in Lemma 3, with $m=2n\pm 1$ and $n=\mp 1$, then $g \mid V_{\pm 1}$ or $g \mid \alpha$. Since $g \mid U_{2n\pm 1}$ and $g \mid \alpha$, Lemma 1 implies $g \mid b$. However, $(\alpha, b)=1$. Hence, g=1.

Theorem 7: Let b = 1. Then, the equation $U_m = z^2 - b$, $m \equiv 1(2)$, has no solution.

<u>Proof:</u> By (36), we have $U_{2n\pm 1}V_{2n}=z^2$. Hence, Corollary 9 implies that $U_{2n\pm 1}=z_1^2$ and $V_{2n}=z_2^2$, which is impossible by (28).

Theorem 8: Let b=1 and $\alpha^2+2=p$, p a prime. Then, the equation $U_m=z^2-\alpha$, $m\equiv 0(2)$,

has

- (a) the solutions m = -2, 0, 4, 6, if d = 5,
- (b) the solutions m = -2, 4, if d = 13,
- (c) the solutions m = -2, 0, 6, if α is a perfect square, $d \neq 5$,
- (d) only the solution m = -2 in all other cases.

Proof:

<u>Case 1</u>. Let m = 4n - 2. By (39), $U_{2n}V_{2n-2} = z^2$. Lemma 3 implies that $(U_{2n}, V_{2n-2}) | p$.

Hence, we have two possibilities:

(a) $U_{2n} = W_1^2$ and $V_{2n-2} = W_2^2$ or (b) $U_{2n} = pW_1^2$ and $V_{2n-2} = pW_2^2$.

The first is impossible by (28). The second can be written by (5) as

$$U_n V_n = pW_1^2, V_{2n-2} = pW_2^2.$$

Let $n \not\equiv 0$ (3). Then equation (10) implies that $(U_n, V_n) = 1$, and so

$$U_n = pt^2, V_n = r^2, V_{2n-2} = pW_2^2$$
 (46)

$$U_n = t^2, V_n = pr^2, V_{2n-2} = pW_2^2.$$
 (47)

Equation (46) does not possess any solution, since the possible values of n, by (28), in order for V_n to be a perfect square, do not yield a solution of $U_n = pt^2$.

207

By using (30) and direct computation, we find that (47) has only one solution, which is n=2 or m=6 provided α is a perfect square.

Let $n \equiv 0(3)$. Equation (10) implies that $(U_n, V_n) = 2$, and so we have to check the following subcases:

$$U_{3\lambda} = 2pt^2, V_{3\lambda} = 2r^2, V_{2n-2} = pW_2^2,$$
 (48)

or

$$U_{3\lambda} = 2t^2$$
, $V_{3\lambda} = 2pr^2$, $V_{2n-2} = pW_2^2$, $(n = 3\lambda)$. (49)

By (29) and the assumption, $V_{3\lambda}=2r^2$ is possible only for $\lambda=0$ or $\lambda=\pm 2$ in the case d=5. The value $\lambda=0$ implies n=0 or m=-2, which gives a solution to (48). The values $\lambda=\pm 2$, d=5, do not give a solution, since $F_{\pm 6}=\pm 8\neq 2pt^2$.

According to (31), the only values of λ for which a solution of (49) may exist are $\lambda=2$ if d=5, or $\lambda=0$ and $\lambda=\pm 1$. Now, $\lambda=0$ does not give any solution, because we would have $pr^2=1$. Similarly, $\lambda=\pm 1$ does not give any solution, since we would have $V_{\pm 3}=\pm \alpha(\alpha^2+3)=2pt^2$, which is impossible because $p \nmid \alpha$ and $p \nmid (\alpha^2+3)$ when $\alpha^2+3=p+1$. Finally, $\lambda=2$, d=5, does not give any solution, since $L_6=18\neq 2\cdot 3r^2$.

Case 2. Let m=4n. By (37), $U_{2n-1}V_{2n+1}=z^2$. Now Lemma 3 implies that $(U_{2n-1},V_{2n+1})\mid p$, so we have two possibilities, which are

$$U_{2n-1} = W_1^2, \ V_{2n+1} = W_2^2 \tag{50}$$

or

$$U_{2n-1} = pt^2 = V_2t^2, V_{2n+1} = V_2r^2.$$
 (51)

By using (28) and (30), we find that (50) has only the solutions:

- (a) m = 0, 4, if d = 5,
- (b) m = 4, if d = 13,
- (c) m = 0, if α is a perfect square, $d \neq 5$.

Using (13) for $2n + 1 = 4\lambda \pm 1$, we have

$$2V_{2n\pm 1} \equiv -2V_{4\lambda-4\pm 1} \equiv \cdots \equiv \pm 2V_{\pm 1} \pmod{V_2}$$
.

Therefore, since $V_{2n+1}=pr^2=V_2r^2$, we have $(a^2+2)|V_{\pm 1}$ or p|a, which is impossible. Thus, (51) has no solution.

Corollary 10: For each $d = a^2 + 4$, $\alpha = 1(2)$, the diophantine equation

$$x^2 = dz^4 - 2dz^2 + a^2$$

has no solution.

Corollary 11: Let $d=\alpha^2+4$ and $\alpha^2+2=p$, where p is a prime. Then, the diophantine equation $x^2=dz^4-2adz^2+(\alpha^2+2)^2$ has:

- (a) Four solutions, $(x, z) = (\pm 3, 0), (\pm 2, \pm 1), (\pm 7, \pm 2), (\pm 18, \pm 3), \text{ if } d = 5.$
- (b) Two solutions, $(x, z) = (\pm 11, 0)$, $(\pm 119, \pm 6)$, if d = 13.
- (c) Three solutions, $(x, z) = (\pm(\alpha^2 + 2), 0), (\pm 2, \pm t), (\pm(\alpha^6 + 6\alpha^4 + 9\alpha^2 + 2), \pm t(\alpha^2 + 2))$, if $\alpha = t^2$ is a perfect square.
- (d) Only the solution $(x, z) = (\pm(a^2 + 2), 0)$ in all other cases.

When $\alpha = 1$ in Theorem 8, we have the following result, found in [8].

[Aug.

Corollary 12: $F_m = z^2 - 1$ iff m = -2, 0, 4, 6.

The next result is an extension of Theorem 7.

Theorem 9: Let b = 1. Then, the equation $U_m = 2z^2 - b$, m = 1(2), has only the solutions $m = \pm 1$.

<u>Proof</u>: Equation (36) implies that $U_{2n\pm 1}V_{2n}-b=2z^2-b$, for $m=4n\pm 1$. Hence, $U_{2m\pm 1}V_{2n}=2z^2$. By Corollary 9,

$$U_{2n\pm 1} = 2t^2$$
, $V_{2n} = r^2$ or $U_{2n\pm 1} = t^2$, $V_{2n} = 2r^2$.

Now $V_{2n} = r^2$ is impossible by (28) and the second case implies, using (30) and (29), that n = 0 or $m = \pm 1$.

The following result is an extended parallel of Theorem 8.

Theorem 10: Let b=1 and $a^2+2=p$, where p is a prime. Then, the equation $\overline{U_m}=2z^2-\alpha$, $m\equiv 0(2)$ has

- (a) the solutions m = -2, 2 if α is a perfect square,
- (b) only the solution m = -2 in all other cases.

Proof:

Case 1. Let m = 4n - 2. Equation (39) implies that $U_{2n}V_{2n-2} = 2z^2$. But, by Lemma 3, $(U_{2n}, V_{2n-2}) \mid V_2$, where $V_2 = p$, so that $(U_{2n}, V_{2n-2}) = 1$ or p. If $(U_{2n}, V_{2n-2}) = 1$, then we must have

$$U_{2n} = 2t^2$$
, $V_{2n-2} = r^2$ or $U_{2n} = t^2$, $V_{2n-2} = 2r^2$.

The first case is impossible by (28). The second case has, by (30) and (29), only the solution n=1 or m=2 if α is a perfect square.

Now, let $(U_{2n}, V_{2n-2}) = p$. We then have to check two possibilities:

$$U_{2n} = pt^2$$
, $V_{2n-2} = 2pr^2$ or $U_{2n} = 2pt^2$, $V_{2n-2} = pr^2$.

In the first case we must have, by (9), $n \equiv 1(3)$, say $n = 3\lambda + 1$. By (5), we also have $U_nV_n = pt^2$. But $(U_n, V_n) = 1$; therefore, we have

$$U_n = pW_1^2, V_n = W_2^2, V_{2n-2} = 2pr^2,$$
 (52)

 $U_n = W_1^2, \ V_n = pW_2^2, \ V_{2n-2} = 2pr^2.$ (53)

Equation (52) has no solution since, by (28), the only solution of $V_n = W_2^2$ is n = 1, for which $U_n = pW_1^2$ is impossible. Equation (53) has no solution either since, by (30), the only possible value for n of $U = W_1^2$ is n = 1, but then $V_1 = \alpha = pW_2^2$, which is impossible.

For the second case we must have, by (9), 3|n, say $n=3\lambda$. By (5), we have $U_{3\lambda}V_{3\lambda}=2pt^2$. Since, by (10), $(U_{3\lambda},V_{3\lambda})=2$, we must check the following subcases:

$$U_{3\lambda} = 4pr_1^2, \quad V_{3\lambda} = 2r_2^2, \quad V_{2n-2} = pr^2;$$
 (54)

$$U_{3\lambda} = (2r_1)^2, V_{3\lambda} = 2pr_2^2, V_{2n-2} = pr^2;$$
 (55)

$$U_{3\lambda} = 2pr_1^2, V_{3\lambda} = (2r_2)^2, V_{2n-2} = pr^2;$$
 (56)

$$U_{3\lambda} = 2r_1^2, V_{3\lambda} = 4pr_2^2, V_{2n-2} = pr^2.$$
 (57)

By (29), the only possible solutions of (54) are λ = 0 for each d, and λ = ± 2 if d = 5. We know λ = 0 is a solution, since U_0 = 0 = $4pr_1^2$ with r_1 = 0 and V_{-2} = pr^2 = V_2r^2 with r = ± 1 .

Since $F_{\pm 6}=\pm 8\neq 4\cdot 3\cdot r_1^2$, $\lambda=\pm 2$ is not a solution of (54). By (30), the only possible solutions of (55) are $\lambda=0$, and $\lambda=4$ if d=5. It is obvious that $\lambda=0$ is not a solution, since $V_0=2\neq 2\cdot V_2^2$. Neither is $\lambda=4$ a solution, since $L_{12}=322\neq 2\cdot 3\cdot r_2^2$. In the same way, we can prove that (56) and (57) have no solutions. The possible values $\lambda=\pm 1$ in (57) do not yield a solution, since $p=\alpha^2+2\sqrt[3]{\alpha(\alpha^2+3)}=V_{\pm 3}$.

<u>Case 2</u>. Let m = 4n. By (37), $U_{2n-1}V_{2n+1} = 2z^2$. Using Lemma 3 and the assumption, $(U_{2n-1}, V_{2n+1}) = 1$ or p.

If $(U_{2n-1}, V_{2n+1}) = 1$, we have

$$U_{2n-1} = 2t^2, V_{2n+1} = r^2$$
 (58)

or

$$U_{2n-1} = t^2, V_{2n+1} = 2r^2.$$
 (59)

By (31) and (28), (58) has no solution. By (29), (59) has no solution.

If $(U_{2n-1}, V_{2n+1}) = p$, we have

$$U_{2n-1} = 2pz_1^2, V_{2n+1} = pz_2^2$$
 (60)

or

$$U_{2n-1} = pz_1^2, V_{2n+1} = 2pz_2^2. (61)$$

Neither (60) nor (61) has a solution by using a proof similar to that given at the end of Theorem 8.

The following are immediate consequences of the preceding theorems.

Corollary 13: If $d = a^2 + 4$, $\alpha = 1(2)$, then the equation $x^2 = 4dz^4 - 4dz^2 + a^2$ has only the solution $(x, z) = (\pm a, 0)$.

Corollary 14: Let $d=\alpha^2+4$ and $\alpha^2+2=p$, where p is a prime. Then, the equation $x^2=4dz^4-4adz^2+(\alpha^2+2)^2$ has

- (a) two solutions, $(x, z) = (\pm(\alpha^2 + 2), 0)$, $(\pm(\alpha^2 + 2), \pm r)$ if α is a perfect square, $\alpha = r^2$,
- (b) only the one solution $(x, z) = (\pm(a^2 + 2), 0)$ in all other cases.

Corollary 15: $F_m = 2z^2 - 1$ iff $m = \pm 1$, ± 2 .

5. GENERALIZED LUCAS NUMBERS OF THE FORM $\mu z^2 \pm \nu$

Theorem 11: The equation $V_m = z^2 + \alpha$, $m \equiv 1(2)$, has only the solution m = 1.

Proof:

Case 1. Let m = 4n - 1. By (42), $V_{2n-1}V_{2n} = z^2$. Since $(V_{2n-1}, V_{2n}) = 1$, we have $V_{2n-1} = t^2$, $V_{2n} = r^2$, which is impossible by (28).

<u>Case 2.</u> Let m = 4n + 1. By (42), $V_{2n}V_{2n+1} - 2\alpha = z^2$. Hence, using (8) and (42), we have

$$\{V_n^2 - 2(-1)^n\}\{V_nV_{n+1} - (-1)^n\alpha\} - 2\alpha = z^2,$$

210

which implies that $V_n M_n = z^2$ with $M_n = V_n^2 V_{n+1} - (-1)^n \alpha V_n - 2(-1)^n V_{n+1}$. Let p be an odd prime and let $p^e \| V_n$. Since $(V_{n+1}, V_n) = \cdots = (V_1, V_0) = (\alpha, 2) = 1$, it follows that $p \| M_n$. This implies $e \equiv 0(2)$ and therefore $V_n = t^2$ or $V_n = 2t^2$. Using (28) and (29), we find that the possible solutions are m=1, 5, 13, 25, -23 if d=5, m=1, 13 if d=13, m=1, 5, 25, -23 if d=29, m=1, 5 if $\alpha=t^2$ and $d\neq 5$, m=1 otherwise. Obviously, m=1 is a solution. For m=5 and $\alpha=t^2$, we have $(\alpha^2+2)^2+\alpha^2=r^2$, which is impossible because both α and α^2+2 are odd. By a direct computation of each corresponding V_m in all other cases, we see that no other solutions exist. Note that for d=29,

$$V_{25} = 766628450142675125$$
.

Following an argument similar to Theorem 11, we can prove Theorem 12.

Theorem 12: The equation $V_m = z^2 - \alpha$, $m \equiv 1(2)$ has only the solution m = -1.

Corollary 16: If b = 1, then the diophantine equations

$$dy^2 = z^4 + 2\alpha z^2 + \alpha^2 + 4$$
 and $dy^2 = z^4 - 2\alpha z^2 + \alpha^2 + 4$

have only the solution $(y, z) = (\pm 1, 0)$.

The next two theorems are similar to the last two, but m is even.

Theorem 13: Let p be an odd prime. Then, the equation $V_m = z^2 + (p-2)$, $m \equiv 0(2)$ has

- (a) the solution m = 0 if p = 3,
- (b) the solutions $m = \pm 2$, ± 4 if d = 5 and p = 5,
- (c) at most $\prod_{i=1}^{r} (s_i + 1) + 1$ solutions if

$$p - 4 = q_1^{s_1} \cdot q_2^{s_2} \cdot \cdots \cdot q_r^{s_r}$$

as its unique factorization.

Proof:

Case 1. Let m = 4n. By (8), $V_{2n}^2 - z^2 = p$, which implies that

$$V_{2n} = \pm \frac{p+1}{2}$$
 or $V_{2n} = \frac{p+1}{2}$ by (19).

If p=3, then $V_{2n}=2$, which implies that n=0 or m=0 is a solution with z=0. If p=5, then $V_{2n}=3$, which can only be true if $n=\pm 1$ and d=5 or $m=\pm 4$ and d=5. If p>5, there exists at most one solution.

<u>Case 2</u>. Let m=4n+2. By (8), $V_{2n+1}^2-z^2=p-4$. If p=3, then $V_{2n+1}=0$, which is impossible. If p=5, then $V_{2n+1}=\pm 1$ and the only possibilities for solutions are n=0 or -1 and d=5 or $m=\pm 2$ and d=5. If p>5, then

$$V_{2n+1} = \pm \frac{d_1 + d_2}{2}, d_1 > 0, d_2 > 0,$$

where (d_1, d_2) runs over all the divisors of p - 4 with d_1d_2 = p - 4. Since the

number of divisors of p - 4 is $\prod_{i=1}^{r} (s_i + 1)$, the theorem is proved.

In the same way, we can prove

Theorem 14: Let p be an odd prime. Then, the equation $V_m = z^2 - (p-2)$, m = 0(2), has

- (a) the solutions $m = \pm 2$, d = 5, if p = 3,
- (b) no solution if p = 5,

(c) at most
$$\begin{cases} \frac{1}{2} \left[\prod_{i=1}^{r} (s_i + 1) - 1 \right] + 2 \text{ solutions if } p - 4 \text{ is a perfect square} \\ \frac{1}{2} \prod_{i=1}^{r} (s_i + 1) + 2 \text{ solutions if } p - 4 \text{ is not a perfect square,} \end{cases}$$

where $p-4=q_1^{s_1}q_2^{s_2}\ldots q_r^{s_r}$ as its unique factorization.

Corollary 17:

- (i) The diophantine equation $z^4 + 2(p-2)z^2 + p(p-4) = dy^2$ has
 - (a) one solution for each d if p = 3,
 - (b) four solutions for d = 5 if p = 5,
 - (c) at most $\prod_{i=1}^r (s_i+1)+1$ solutions if p>5 and $p-4=q_1^{s_1}\dots q_r^{s_r}$ as its unique factorization.
- (ii) The diophantine equation $z^4 2(p-2)z^2 + p(p-4) = dy^2$ has
 - (a) one solution for each d is p = 3,
 - (b) no solution for each d if p = 5,

$$\text{(c) at most} \begin{cases} \frac{1}{2} \left[\prod_{i=1}^r (s_i + 1) - 1\right] + 2 \text{ solutions if } p - 4 \text{ is a perfect square} \\ \frac{1}{2} \prod_{i=1}^r (s_i + 1) + 2 \text{ solutions if } p - 4 \text{ is not a perfect square,} \end{cases}$$

where p > 5 and $p - 4 = q_1^{s_1} \dots q_r^{s_r}$ as its unique factorization.

Corollary 18: The following can be found in [4] and [8]:

$$L_m = z^2 + 1 \text{ iff } m = 0, 1,$$

$$L_m = z^2 - 1$$
 iff $m = -1$, ± 2 .

By an argument similar to Theorems 11 and 12, we can prove

Theorem 15:

- (i) The equation $V_m = 2z^2 + \alpha$, m = 1(2), has only the solution m = 1.
- (ii) The equation $V_m = 2z^2 \alpha$, $m \equiv 1(2)$, has

- (a) the solutions $m = \pm 1$ is α is a perfect square,
- (b) only the solution m = -1 in all other cases.

By using the method of Cohn, as before, we can also prove

Theorem 16:
$$L_m = 2z^2 + 1$$
, $m \equiv 0(2)$, iff $m = \pm 2$, $L_m = 2z^2 - 1$, $m \equiv 0(2)$, iff $m = \pm 4$.

Corollary 19:
$$L_m = 2z^2 + 1$$
 iff $m = \pm 2$, 1,
 $L_m = 2z^2 - 1$ iff $m = \pm 1$, ± 4 .

REFERENCES

- 1. J. A. Antoniadis. "Über die Kennzeichnung zweiklassiger imaginär-quadratischer Zahlkörper durch Lösungen Diophantischer Gleichungen." Journal für die reine und angewandte Math. 339 (1983):27-81.
- 2. J. H. E. Cohn. "Eight Diophantine Equations." *Proc. of the L.M.S.* (3) 16 (1966):155-166, *Addendum* (3) 17 (1967):381.
- 3. R. Finkelstein. "On Fibonacci Numbers Which Are One More Than a Square."

 Journal für die reine und angewandte Math. 262-63 (1973):171-178.
- 4. R. Finkelstein. "On Lucas Numbers Which Are More Than a Square." The Fibonacci Quarterly 13, no. 4 (1975):340-342.
- 5. R. K. Guy. Unsolved Problems in Number Theory. New York: Springer-Verlag, 1981.
- 6. W. Ljunggren. "Über die unbestimmte Gleichung $Ax^2 By^4 = C$." Archic for Math. og Naturvidenskab 41, no. 10 (1938), 38 pp.
- 7. T. Nagell. Introduction to Number Theory. New York: Wiley, 1951.
- 8. N. Robbins. "Fibonacci and Lucas Numbers of the Forms w^2 1, w^3 ± 1." The Fibonacci Quarterly 19, no. 5 (1981):369-373.
- 9. H. C. Williams. "On Fibonacci Numbers of the Form $k^2 + 1$." The Fibonacci Quarterly 13, no. 3 (1975):213-214.

♦♦♦♦