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Recently, G. E. Bergum and V. E. Hoggatt, Jr. [1] have shown that
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where {Fk(x)}z=l is the sequence of Fibonacci polynomials, defined recursively
by
Fi(x) =1, F,(x) =, Fk+2(x) = ka+l(x) + F(x), k=21,

and a(x) = (x + Va2 + 4)/2, B(x) = (x - Vx2 + 4)/2. Evidently, for x = 1 it is
the known formula for the Fibonacci numbers [2].

In this paper we give, by an elementary method, an extension of the result
(1). Namely, we show that
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Obviously, for r = 2, we obtain (1) from (2).
Furthermore, we find that
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where L, (k) is the Lucas polynomial defined by Lj(x) = Fy,,(x) + F_,(x).
From the identity
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if we put x = Bk(x)/uk(x) we obtain
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Using the facts that IB(x)/a(x)] <1 4if £ > 0 and that B(x)/a(x) < -1 if

x < 0, from (4), when m - =, we have (2).
Similarly, from
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if we put x = 8% () /ak(x), we find (3).
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