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1. INTRODUCTION 

Let $(x) be Euler's totient function. The literature on solving the equation 
cj)0) = n (see [1, pp. 221-223], [2-5], [6, pp. 50-55, problems B36-B42], [7-11], 
[12, pp. 228-256], and the references therein) can be viewed as a collection of 
open problems. For n = 2a, we essentially have the problem of factoring the 
Fermat numbers. Another notorious example is Carmichaelfs conjecture [3, 7] 
that if a solution exists it is not unique. Some results (e.g., Example 15 of 
[12, pp. 238-239]) can be established on the basis of Schinzel's Conjecture H 
[12, p. 128] of which the twin prime conjecture is a very special case. See 
also [10, 11]. 

Here we define a new ratio R(ri) that is associated with this equation in a 
very natural way. Our main result, Theorem 3 of §3, is that R(ji) can be arbi-
trarily large. This can be read independently of §25 where the highest power 
of 2 dividing R(n) is studied. 

To define R(n) , let Ln be the least common multiple of all solutions of 
$(x) = n. Then, let Gn be the greatest common divisor of all numbers an - 1, 
where a is in the reduced residue system modulo Ln given by 

(a, Ln) = 1, (1.1) 

- 1 E 0 mod x (1.2) 

for any solution x, we have 

an - 1 = 0 mod Ln. (1.3) 

Hence, the ratio R(n) defined by 

R(n) = Gn/Ln (1.4) 

is an integer. For example, if n = 2, then x is 3, 4, or 6, so 

L2 = 12, G2 = (I2 - 1, 52 - 1, 72 - 1, ll2 - 1) = 24, (1.5)' 

and hence R(2) = 2. 
Our L„, Gn resemble Carmichaelfs L and M on pp. 221-222 of [1]. In fact, 

Carmichael very briefly alludes to the ratio M/L on p. 222. However, his table 
on p. 222 shows that his M = Mn is often astronomical in comparison to our Gn, 
and that Mn/Gn need not be an integer. 

We write (m) p for the highest power of the prime p in m> and (m)0dd for 
m/(m)2. Thus, (m)2 = 2e is equivalent to 2ellw. Theorem 3 of §3 asserts that, 

s 
1 

ince 
a 

< 

rc _ 

a < 

• 1 = 

Ln, 

- a* w 

*This work was partially supported by the National Science Foundation under 
grant MCS-8031615. 

1985] 265 



A RATIO ASSOCIATED WITH <j>0) = n 

2 a + 2 | | l l 2 ° - 1 , 

2 a + 2 | | (8 O T + 5 ) 2 ° • 
and 

2 a + 2 | ( 2 fe + l ) 2 " • 

- 1, 

- 1. 

for every prime p and every M > 0, there is an n = n(p, M) such that 

(i?(n))p > M. 

2. RESULTS ON PARITY 

By means of induction, the binomial theorem, and the identity 

z2 - 1 = (2 - l)(s + 1), 
it is easy to prove the following lemma. 

Lemma 1: If a M is an integer, then 

(2.1) 

(2.2) 

(2.3) 

Propositions 1-3 and Theorems 1 and 2 are consequences of this Lemma. We 
give the details of the proof for Theorem 2 only; the others are similar. 

Write $ for the set of all n such that §(x) = n has a solution, and $ ' for 
the complement of this set. 

Proposi tion 1: If n > 2, then 2\Ln. If n = 2n', where n E $ and nr E $', then 
2IL„. 

It is harder to show that infinitely often every solution is even; this is 
proved in [12, p. 238, Example 14]. 

Proposition 2: If n > 2, then (i?(n))2 > 2. 

Proposition 3: If (n) 2 = 2a, then (i?(n))2 < 2a + 1. 

In the case of n = 136 = 8 • 17, for example, the bound of Proposition 3 is 
exact. 

Theorem 1: Let s ) 1 be a fixed integer. If t ̂  0 is minimal, such that 

n = 2*(2s + 1) G $, (2.4) 

then 

(R(n))2 = 2*+1. (2.5) 

We observe that again n = 136 = 8 * 17 illustrates this result, since 17, 
34, and 68 all belong to $f. Theorem 1 is proved with the aid of Proposition 
3 which, in turn, is proved with the assistance of (2.2) of Lemma 1. 

Corollary 1: If s > 1 is an integer and n = 2(2s + 1 ) E $, then (R(n))2 = 4. 

Proof: Clearly, 2s + 1 E <£>f. 

Corollary 2: Infinitely often (R(ri)) 2 = 4. 

Proof: If p is any prime of the form 4s + 3, then 
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ks + 2 = p - 1 = <()(p). (2.6) 

We may vary s so that p runs over the primes of the form 

p = 2t+1s + 2* + 1; (2.7) 

this implies that 

c|>(p) = 2*(2s + 1) G $. (2.8) 

However, it does not follow directly from crude density considerations and the 
prime number theorem for arithmetic progressions that the 2h(2s + 1 ) for 1 < h 
< t will sometimes all lie in $f. In fact, Erdos [4] has proved that, for any 
M > 0, the number of elements of $ not exceeding x is 

»i^( l o g l o g x)M- ( 2 - 9 ) 

Corol 1 ary 3» Schinzelfs Conjecture H [12, p. 128] implies that, for any fixed 
t > 0, the equality (i?(n))2 = 2t + 1 holds infinitely often. 

Proof: For t = 0 , 1, this follows unconditionally from Theorem 2 and Theo-
rem 1, Corollary 2. For t > 3, we first show that there are infinitely many s 
for which the two polynomials 

2s + 1, 2t+1s + 2* + 1 (2.10) 

are simultaneously prime, whereas the t - 1 polynomials 

2(2s + 1), 22(2s + 1), ..., 2t"1(2s + 1) + 1 (2.11) 

are all composite. In fact, for (A, B) = 1 and A > 0, the greatest common divi-
sor of the infinite set 

(2a; + l)[2A{2x + 1) + B], re = 1, 2, 3, . . . , (2.12) 

is unity (a trivial exercise in [12, p. 130]). Hence, "condition S" of Conjec-
ture H is satisfied for the first two polynomials, and the above assertion fol-
lows from [10] (use statement Ci3, p. 1). Now write p = 2t+1s + 2t + 1 so 

<Kp) = 2*(2s + 1) E $. (2.13) 

If 

<j>(a0 = 2/z(2s + 1 ) , 0 < h < t, (2.14) 

then x must be divisible by a non-Fermat prime q such that 

$(q)\2h(2s + 1 ) . (2.15) 

Hence, 

q - 1 = 2.*(2s + 1 ) , 0 < g < h9 (2.16) 

a contradiction. Hence, t satisfies the hypothesis of Theorem 1, and the re-
sult follows. C. Pomerance!s proof does not use H. 

Theorem 2: If a > 1 and n = 2 a , then (i?(n))2 = 2. 

Proof: Since (j)(2a + 1 ) = n, we have 2 a + 1 |L n . Since for any odd ra, 

cf>(2a + V> > 2 a + 1 > 2a, (2.17) 

we have 2a + 1||£„. 
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For any integer s, we have 10|(J)(lls), so (j)(lls) ^ 2a. Hence (since Ln > 12 
Is true for n < 12, and is obvious for n > 12) , the number 11 is in the reduced 
residue system. Thus, 

ffjll2" - 1 (2.18) 

and, by (2.1) of Lemma 1, 

(Gn)2 < 2a+2. (2.19) 

Because every element of the reduced residue system is odd, (2.3) of Lemma 1 
yields 2a+2\(Gn)2. Hence, (Gn)2 = 2a+2 and the result follows. 

Remark: We know of no other cases in which (R(n))z = 2. For £(a) = [log a] ̂  4, 
numerical calculations suggest, for n - 2 a , that 

£(a) 
Ln = In II Fm and Gr) = 2Ln, (2.20) 

m= 0 
where Fm is the Fermat number 

Fm = 22" + 1. (2.21) 

However, this simply reflects the fact that the Fermat numbers Fm are prime for 
m < 4, and (2.20) must fail for £(a) > 5; see [12, pp. 237-238, Example 13]. 
It is possible that (i?(n))odd > 1 for infinitely many n = 2a. C. Pomerance has 
proved the converse of Theorem 2. 

3.. ARBITRARILY LARGE R(n) 

Observe that 

<t>(x) = 2 <§=*> x = 3, 4, or 6, (3.1) 

and 

(f)(x) = 44 <=̂ > x = 3 • 23, 4 • 23, or 6 • 23. (3.2) 

We say that 23 is a prime replicator of 2. 

Defi ni t Jon: The prime p is a prime replicator of A? if all solutions of 

<f>(*) = m{p - 1) (3.3) 

are given by b-jp, ..., &rp, where b1> . .., Z?r are all solutions of 

(J)(X) =772. (3.4) 

Theorem E: Given m ̂  2, all but o(x/log x) of the primes are prime replicators 
of m. 

Proof: This is a result of Erdos [5, pp. 15-16]. His proof [5, pp. 15-18] 
uses BrunTs method. 

It follows by the prime number theorem for arithmetic progressions that 
every arithmetic progression containing infinitely many primes has infinitely 
many prime replicators of m. 

Theorem 3- Let q be any prime, and e ) 1 an integer. Then, for some n, 

(R(n))q > qe. (3.5) 
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P£00f: Set m = §(qe) . Let £1S . .., br be all solutions of $(x) = m. Set 

B = [bls ..., Z?p] and <?/ = (B)^ . (3.6) 

Clearly, f ^ e. By Theorem E, we can choose & so that 

p = qf<t>(q2f)k + 1 > B (3.7) 

is a prime replicator of m. Then all solutions to 

$(x) = n = ?w(p - 1) = qf$(q2f)mk (3.8) 

are Z^p, . . . , &pp, so 

Ln = [&,, ..., br]p = Sp. (3.9) 

If a is in the reduced residue system, then 

a = qfh + t, 0 < t < qf9 (ts q) = 1. (3.10) 

Hence, for Q = q2f, we have 

an - 1 = (t + ^7z)n - 1 = tn + ntn~xqfh + ••• - 1 

= tn - 1 mod § E s ^ 0 - 1 mod «, (3.11) 

where (s, ® = 1. By Eulerfs generalization of Fermatfs simple theorem, the 
above is congruent to zero, and hence 

(Gn/Ln) = (Gn)q/qf > q2f/qf > q*. (3.12) 
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