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1. INTRODUCTION

Let ¢(x) be Euler's totient function. The literature on solving the equation
¢(x) = n (see [1, pp. 221-223], [2-5], [6, pp. 50-55, problems B36-B42], [7-11],
[12, pp.228-256], and the references therein) can be viewed as a collection of
open problems. For n = 2%, we essentially have the problem of factoring the
Fermat numbers. Another notorious example is Carmichael's conjecture [3, 7]
that if a solution exists it is not unique. Some results (e.g., Example 15 of
[12, pp. 238-239]) can be established on the basis of Schinzel's Conjecture H
[12, p. 128] of which the twin prime conjecture is a very special case. See
also [10, 11].

Here we define a new ratio R(n) that is associated with this equation in a
very natural way. Our main result, Theorem 3 of §3, is that R(n) can be arbi-
trarily large. This can be read independently of §2, where the highest power
of 2 dividing R(»n) is studied.

To define KR(n), let L, be the least common multiple of all solutions of
¢(x) = n. Then, let G, be the greatest common divisor of all numbers a” - 1,
where g is in the reduced residue system modulo L, given by

1<a<yi,, (a, Ly) =1, (1.1)
Since

ar - 1=a’® -1 20mod = (1.2)
for any solution x, we have

a” - 1 =2 0 mod L. (1.3)
Hence, the ratio R(n) defined by

R(n) = Gu/Ly (1.4)
is an integer. For example, if n = 2, then x is 3, 4, or 6, so

L, =12, G, = (12 = 1,5% - 1,72 - 1,11% - 1) = 24, (1.5)

and hence R(2) = 2.

Our L,, G, resemble Carmichael's [ and M on pp. 221-222 of [1]. 1In fact,
Carmichael very briefly alludes to the ratio M/L on p. 222. However, his table
on p. 222 shows that his M = M, is often astronomical in comparison to our Gps
and that M, /G, need not be an integer.

We write (m)p for the highest power of the prime p in m, and (m)oaa for
m/(m),. Thus, (m), = 2° is equivalent to 2¢lIm. Theorem 3 of §3 asserts that,
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for every prime p and every M > 0, there is an n = n(p, M) such that

(R(m))p > M.

2. RESULTS ON PARITY

By means of induction, the binomial theorem, and the identity
22 -1 =(z-1(z+1),

it is easy to prove the following lemma.

Lemma 1: If o 2 1 is an integer, then

20%2112% - 1, (2.1)

20%2|(8m + 5)%° - 1, (2.2)
and .

22%2| 2k + 1) - 1. (2.3)

Propositions 1-3 and Theorems 1 and 2 are consequences of this Lemma. We
give the details of the proof for Theorem 2 only; the others are similar.

Write & for the set of all »n such that ¢(x) = n has a solution, and &' for
the complement of this set.

Proposition 1: If n 2 2, then 2|L,. If n = 2n', where n € ® and n' € ¢', then
2lL,,.

It is harder to show that infinitely often every solution is even; this is
proved in [12, p. 238, Example 14].

Proposition 2: If n > 2, then (BR(n)), = 2.
Proposition 3: If (n), = 2% then (R(n)), < 2°*%.

In the case of n = 136 = 8° 17, for example, the bound of Proposition 3 is
exact.

Theorem 1: Let s 2 1 be a fixed integer. If ¢ 2 0 is minimal, such that
n=2%t2s+1) €0, (2.4)
then
(R(n)), = 2%, (2.5)
We observe that again #n = 136 = 8° 17 illustrates this result, since 17,
34, and 68 all belong to ®'. Theorem 1 is proved with the aid of Proposition
3 which, in turn, is proved with the assistance of (2.2) of Lemma 1.
Corollary 1: If s > 1 is an integer and n = 2(2s + 1) € ¢, then (R(n)), = 4.
Proof: Clearly, 2s + 1 € o',
Corollary 2: Infinitely often (R(n)), = 4.

Proof: If p is any prime of the form 4s + 3, then
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bs + 2 =p -1=¢(p). (2.6)

We may vary s so that p runs over the primes of the form

p=2%1ls + 2% + 1; (2.7)
this implies that

d(p) = 2t(2s + 1) € 0. (2.8)

However, it does mot follow directly from crude density considerations and the
prime number theorem for arithmetic progressions that the 2%2(2s + 1) for 1 < &
< t will sometimes all lie in ¢'. In fact, ErdSs [4] has proved that, for any
M > 0, the number of elements of ¢ not exceeding x is

x
log x

>> (log log x)™. (2.9)

Corollary 3: Schinzel's Conjecture H [12, p. 128] implies that, for any fixed
t = 0, the equality (R(n)), = 2°*! holds infinitely often.

Proof: For ¢ = 0, 1, this follows unconditionally from Theorem 2 and Theo-
rem 1, Corollary 2. TFor ¢t 2 3, we first show that there are infinitely many s
for which the two polynomials

26 + 1, 2ttlg + 2t +1 (2.10)

are simultaneously prime, whereas the ¢ - 1 polynomials
2(2s + 1), 2%(Q2s+ 1), ..., 28" % (28 + 1) + 1 (2.11)

are all composite. In fact, for (4,B) = 1 and 4 > 0, the greatest common divi-
sor of the infinite set

(2x¢ + 1)[24(22 + 1) + B], x=1, 2, 3, ..., (2.12)

is unity (a trivial exercise in [12, p. 130]). Hence, '"condition S" of Conjec-
ture H is satisfied for the first two polynomials, and the above assertion fol-
lows from [10] (use statement Ci;3, p. 1). Now write p = 2t*1ls + 2T + 1 so

d(p) = 2t(2s + 1) € 0. (2.13)
I1f

d(x) = 2728 + 1), 0<h<t, (2.14)
then x must be divisible by a non-Fermat prime g such that

o272 + 1. (2.15)
Hence,

qg-1=29%2s+ 1), 0<g<xh, (2.16)

a contradiction. Hence, t satisfies the hypothesis of Theorem 1, and the re-
sult follows. C. Pomerance's proof does not use H.

Theorem 2: If oo > 1 and n = 2%, then (R(n)), = 2.

Proof: Since $(2**!) = n, we have 2°*!|L,. Since for any odd m,
9 (2%*2m) > 20%1 > g0, (2.17)

we have 2°*1|L,.
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For any integer s, we have 101¢(115),so ¢(11s) # 2*. Hence (since L, = 12
is true for n < 12, and is obvious for #n > 12), the number 11 is in the reduced
residue system. Thus,

¢ |11 -1 (2.18)
and, by (2.1) of Lemma 1,
(G,), <2072, (2.19)

Because every element of the reduced residue system is odd, (2.3) of Lemma 1
yields 2°*?1(G,),. Hence, (G,), = 2°t2 and the result follows.

Remark: We know of no other cases in which (#(n)), =2. For Q(u)==[log2u] < 4,
numerical calculations suggest, for n = 2%, that

()
L,=2nll ¥, and G, =2L,, (2.20)
m=0
where F, is the Fermat number
F,o=2% + 1. (2.21)

However, this simply reflects the fact that the Fermat numbers F, are prime for
m< 4, and (2.20) must fail for &(a) =2 5; see {12, pp. 237-238, Example 13].
It is possible that (R(n)),y, > 1 for infinitely many »n = 2%, C. Pomerance has
proved the converse of Theorem 2.

3. ARBITRARILY LARGE R{(n)

Observe that

d(x) = 2 = x =3, 4, or 6, (3.1)
and

O(xy = 44 <> x = 3-23, 4+ 23, or 6+ 23. (3.2)

We say that 23 is a prime replicator of 2.

Definition: The prime p is a prime replicator of m if all solutions of

d(x) = mp - 1) (3.3)
are given by b,p, ..., b,p, where b,, ..., b, are all solutions of
o(x)y = m. : (3.4)

Theorem E: Given m 2 2, all but o(x/log x) of the primes are prime replicators
of m.

Proof: This is a result of Erdos [5, pp. 15-16]. His pfoof [5, pp. 15-18]
uses Brun's method.

It follows by the prime number theorem for arithmetic progressions that
every arithmetic progression containing infinitely many primes has infinitely
many prime replicators of m.

Theorem 3: Let g be any prime, and ¢ # 1 an integer. Then, for some #,

BM), = qge. (3.5
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Proof: Set m = ¢$(g®). Let bys «.., by be all solutions of ¢(x) = m. Set
B=1[bys ..., b,] and ¢f = (B)g . (3.6)
Clearly, f > e. By Theorem E, we can choose % so that
p=q'e(q*Hk +1>B (3.7)
is a prime replicator of m. Then all solutions to
(@) =n=mp - 1) = qglo(g* Hmk (3.8)
are bip, ..., b,p, so
L,=1by, ..., b.lp = Bp. (3.9)
If g is in the reduced residue system, then
a=q¢n+t, 0<e<qgf, (t, ¢ =1. (3.10)
Hence, for ¢ = qu, we have
ar - 1=t +gm" -1 =t"+nmt" gh+ o -1
=t" - 1lmod @ = s%9 - 1 mod g, (3.11)
where (s, @ = 1. By Euler's generalization of Fermat's simple theorem, the
above is congruent to zero, and hence
(GolDy) = (G, /g% 2 ™ /g7 > qe. (3.12)
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