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1. INTRODUCTION 
We follow graph theoretic terminology as in [B&M]. Let G = (V 9 E) denote a 

graph where V is a set of vertices and E is a set of nonoriented edges. Though 
we do not in general consider graphs with loops or multiple edg£s,we make ref-
erence to such graphs for the purpose of proofs. When an edge e appears m 
times9 we say e has multiplicity m. A subgraph £'= (Vr

9 Ef) of G is any graph 
such that V C V and Ef C E3 and a spanning subgraph of G contains every vertex 
of V. A sequence of vertices n19 n2, n3, ..., n^ is a path of G if n± E V9 
{n^, n^ + 1} ELE9 for all i9 and no vertices are repeated. A path is a cycle if 
n1 = nk. A tree of G is a subgraph with no cycles; a spanning tree contains 
every vertex of G, Let r(G) denote the count of spanning trees of G. 

Spanning tree counts of general graphs can be obtained in 0(n ) time by 
computing the determinant of its in-degree matrix [7], where n is the number 
of vertices. This function grows quickly; as well, the practical interest of 
circuit theory in counting spanning trees motivates the study of classes of 
graphs for which spanning tree counts can be obtained in linear time. 

Sedlacek [19] notes that Wn+l9 the wheel on n + 1 vertices9 is obtained 
from a cycle on n points we call the rim by joining each point in the cycle to 
another point we call the hub. Vertices and edges on the rim are rim vertices 
and rim edges; an edge joining a rim vertex and the hub is a spoke. Sedlacek 
considers Fn + l9 the auxiliary fan of Wn + 19 derived from Wn + 1 by removing a sin-
gle rim edge and proves 

. .F . _ (3 + v ^ ) ^ 1 - (3 - ^ 5 ) " + 1 

2" + V5 
and 

*«„> - H^r * (H^)"" - »• 
It is remarkable that r(Fn+1) generates every second number of the Fibonacci 
series. 

Myers [14] and Bedrosian [2] derive similar formulas for wheels and multi-
graph wheels in a circuit theory setting. Hilton [10] presents formulas for 
r(G) of fans and wheels in terms of Fibonacci and Lucas numbers3 and Fielder 
[8] provides tree counts for sector graphs9 fans with certain multiple edges. 
Slater [21] shows that all maximal outerplane graphs with exactly two vertices 
of degree two have the same spanning tree count as fans. (We coin the term 
generalized fan to refer to these graphs in [16] and [17].) Shannon [20] de-
rives r(Wn+1) with a number theoretic approach. Bange, Barkauskass and Slater 
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[1] show that generalized fans have more spanning trees than any other maximal 
outerplane graph. Most of these studies have been motivated by the remarkable 
involvement of Fibonacci numbers in spanning tree counts. 

The study of network reliability demands counts of subgraphs other than 
spanning trees. Previously, formulas for subgraph counts apparently existed 
only for complete graphs [9]• A network is commonly modeled as a probabilistic 
graph where each edge e fails independently with probability p and vertices 
never fail. The probability that such a graph is connected is called probabi-
listic connectednesss and is a standard measure of network reliability. This 
can be generalized in two different ways. In some applications, a network may 
not be considered operational unless it has edge connectivity or cohesion of 
at least k; this we call fc-cohesive connectedness. Alternately, a network may 
be considered operational if it has broken down into no more than k components; 
we call this ^-component connectedness. In Section 2, we use Lucas recurrences 
to count various types of subgraphs of generalized fans and related graphs. 
Section 3 counts connected spanning subgraphs with cohesion of at least two 
(two-cohesive). Section 4 presents the rank polynomial as a technique for 
classifying subgraphs of generalized fans both by number of edges and by num-
ber of components. We conclude in Section 5 with some applications. By noting 
that probabilities can be encoded in the coefficients of some of these recur-
rences, we obtain reliability formulas as well as subgraph counting formulas. 
As in previous studies, we find that the required enumerations are given in 
two-term recurrence relations; hence, the desired subgraph counts are Lucas 
numbers. 

2. COUNTING CONNECTED SPANNING SUBGRAPHS 

We begin by counting connected spanning subgraphs of generalized fans that 
satisfy a Lucas recurrence. Generalized fans are a subset of 2-trees [18], 
defined recursively as follows: 

1) A single edge is a 2-tree. 

2) If £ is a 2-tree with edge {x9 y}, adding a new vertex z9 and the two 
edges-{a?, z] and {y9 z} creates a new 2-tree. If G is not a single 
edge, {#9 y} becomes an interior edge of the new graph. 

When parallel edges are not allowed, 2-trees are equivalent to maximal 
series-parallel networks as in [6], [16], [17]'; other definitions of series-
parallel networks do appear in the literature. 

Any vertex of degree two is a peripheral vertex; an edge incident on a 
peripheral vertex is a peripheral edge. To illustrate the counting technique, 
we reproduce in part this lemma from [16] which counts connected spanning sub-
graphs of generalized fans. 

Lemma 2.1: The number of connected spanning subgraphs of an n-vertex general-
ized fan, sc(n) 9 satisfies the recurrence: 

sciri) = kscin - 1) - 2sc(n -2). 

Proof: Let peripheral vertex z be attached to edge {x3 y) of generalized fan 
G by edges {x9 z\ and {y9 z}. A connected spanning subgraph of G induces on 
G - z either a connected spanning subgraph or a disconnected spanning subgraph 
which the addition of {x9 y} would connect. To handle this latter case, we 
define dcin) to be the number of spanning subgraphs of an n-vertex generalized 
fan which the addition of a specific peripheral edge would connect. 

1985] 331 



LUCAS SEQUENCES IN SUBGRAPH COUNTS OF SERIES-PARALLEL AND RELATED GRAPHS 

Any connected spanning subgraph of G must contain at least one of {x, z] 
and {y, z}. If both are selected, the graph induced on G - z must either be 
connected, or be one of the graphs counted by dc. In this case, there are 
sc{ri - 1) + doin - 1) induced subgraphs. Otherwise, a connected spanning sub-
graph contains either [x9 z} or {x* s})but not both. But then the graph induced 
on G - z must be connected; the number in this case is 2so(n - 1) . Therefore, 

so in) = 3sc(n - 1) + doin - 1). 

By a similar argument, 

dc{n) - se(n - 1) + dcin - 1). 

These two recurrences may be combined to yield 

se(n) = kscin - 1) - 2sc(n - 2). • 

Since so{2) = 1 and so(3) = 4, the recurrence yields the closed formula 

(2 + v^)""1 - (2 - Jl)"-1 
se(n) = - . 

2/2 

From a reliability perspective, it is interesting that all generalized fans 
have the same number of connected spanning subgraphs; in addition, generalized 
fans have more connected spanning subgraphs than any other 2-tree [16]. We say 
Fi is a sub fan of the fan Fn if h, the hub of Fn, is a vertex in F^ , Fi is a 
subgraph of Fn and F^ is a fan. From Lemma 2.1, we then show: 

Lemma 2.2: For n > 4, the number of connected spanning subgraphs of a wheel on 
n vertices, scw(n), is 

n 
scw(n) = 2 £sc(£). 

i = 2 

Proof: Consider the n-vertex wheel Wn with rim edge {a, b}. Denote by Fn the 
auxiliary fan of Wn created by removing {a, b}. 

A connected spanning subgraph of W may or may not contain {a, 2?}. If not, 
there are sc(n) connected spanning subgraphs of the auxiliary fan of Wn which 
are also connected spanning subgraphs of Wn. But we can also add the edge 
{a, b} to any of the connected spanning subgraphs of Fn and get a connected 
spanning subgraph of Wn. 

Lastly, the edge {a,b] connects any two-component spanning subgraph of Fn9 
one containing a and the other containing b. Such a spanning subgraph of Fn 
must consist of a path on n - i vertices and a connected spanning subgraph of 
the subfan of Fn on the remaining i vertices. 

For each i, there are exactly two ways we can choose a path on n - t ver-
tices containing exactly one of a or Z?, and so(i) ways of obtaining a connected 
spanning subgraph on the remaining i vertices; hence, for each i we obtain 
2so(i) connected spanning subgraphs of Wn. We vary i from 2 to n - 1, and the 
result follows. • 

The above simplifies to: 

sow(n) = (2 + ^)n~1 + (2 - yfi)71'1 - 2. 

This is analogous to SedlacekTs formula for spanning trees in a wheel. 
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3. COUNTING 2-COHESIVE SPANNING SUBGRAPHS 

Sometimes a network must be at least ^-cohesive, i.e., the order of the 
minimum edge cutset must be at least k, to be operational. This happens in an 
environoment where queuing delay is a problem [26], The number of 2-cohesive 
spanning subgraphs of generalized fans satisfies a recurrence of the Lucas type 
[15]. We state the following without proof. 

Lemma 3-1: For n ^ 3, sc2(n)s the number of 2-cohesive spanning subgraphs of 
an n-vertex generalized fan is 

sc2(n) = dc2(n) = 2sc2(n - 1) + sc2(n - 2) 

= ̂ [(1 + V2)n~2 - (1 - /2)n~2]. m 

As before, the count of two-connected spanning subgraphs is maximized by mini-
mizing the number of peripheral vertices. 

k. THE RANK POLYNOMIAL OF A GENERALIZED FAN 

Subgraph counts have been studied in an algebraic setting by Tutte [22], 
[23], [24], and [25] and others [3] and [5]. In this section, we derive the 
rank polynomial of a generalized fan, by a similar technique. 

Let o(G) denote the number of components of a graph G. In addition, write 

i(G) = \V\ - c(G), j(G) = \E\ - \V\ + o(G). 

If S is any subset of E, GiS denotes the subgraph of G induced by S. Then 
denote by RK(G; ts z) the rank polynomial of G where 

RUGi t, 3) = L t^GiS)z^GiS\ 
SCE 

Note that i(G:S) + j(GiS) = \s\ ; thus, from the rank polynomial of a graph, 
we can quickly classify spanning subgraphs of G not only by number of edges 
but also by number of components. From [24], we can trivially derive the fol-
lowing three properties of the rank polynomial which completely characterize 
RK(G; t , z): 

1) If G consists of two vertex disjoint subgraphs H and K9 then 

RK(G; t, z) = RK(H; t , z)RK(K; t, z). 
2) (Rank polynomial factoring theorem). If e is any edge in E9 

RK(G; t9 z) = RK(G = e; t, z) + tRK(Gm e; t, 2), 
where G® e is graph G less edge e = {x, y] with endvertices x and y 
identified. 

3) If G consists of a single vertex and k loops, 

RK(G; t9 z) = (1 + z)k. 
Thus, the rank polynomial is a rich source of information about subgraph 

counts. We need some more identities: 
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Lemma 4.1: (a) If G is a single edge on two vertices, then 

RK(G; t9 z) = 1 + i. 

(b) If Gx is the graph derived by adding a loop to any vertex x of 
G9 then 

RK(GX; t9 z) = (1 + z)RK(G; t9 z). 

(c) If G - E U K and H D K contains no edges and exactly one ver-
tex, 

RK(G; t9 z) = RK(H; t9 z)RK(K; t9 z). 

Proof: (a) Note that if H is any edgeless graph, then RK(H; t, 2) = 1. A 
single application of the rank polynomial factoring theorem yields 
the result. • 

(b) Any spanning subgraph of G is a spanning subgraph of Gx; to each 
spanning subgraph of G9 we can add the edge [x9 x} also yielding 
another spanning subgraph of Gx. This second set of spanning sub-
graphs can be represented by multiplying the rank polynomial of G 
by 2, i.e., increasing the edge count of every term in the poly-
nomial without disturbing any other information, m 

(c) Consider any subgraphs H' and K' of H and K9 respectively. H' has 
nH vertices, eH edges, and cH components. Similarly, Kr has nK 
vertices, eK edges, and cK components. The subgraph H' U K' of G 
has nH + nK - 1 vertices, eH + eK edges, and cH + cK - 1 components. 
Expressing the term of RK(G; t9 z) corresponding to Hr U Kr in 
terms of the corresponding expressions for H' and K! in RK(H; t9 z) 
and RK(K; t9 z) yields the desired result, m 

We have seen that every generalized fan on n vertices, regardless of topol-
ogy, has the same number of connected spanning subgraphs. Nevertheless, it is 
surprising that all n-vertex generalized fans have the same rank polynomial, 
again satisfying a two-term linear Lucas recurrence. 

Lemma 4.2: The rank polynomial of any generalized fan on n vertices, S{n)9 
satisfies the recurrence 

S(n) = (1 + 3t + tz)S(n - 1) - £(1 + t)(l + z)S(n - 2) 

which may be solved for the closed formula 

L 2 , _i_ 2 „ _ / _, , /I , ,\rs. J -l , OJ- 1 -/- „ 1 nj\n~ 2 
c / s _ 1 + It + 3tz + tAz - tz + (1 + t)q/l + 3t + tz + a\n~ b\n) ~ ^ \̂  2 / 2a 

1 + It + 3t2 + t2s 
2a 

tz - (1 + t)a /l + 3t + tz - a\r' 

where a = V(l + 3t + ts)2 + 4£(1 + t)(l + g) . 

Proof: As preliminaries, consider some special cases. Let #n = Gn_i U {x9 y], 
be an n-vertex graph where Gn_1 is an n - 1-vertex generalized fan with periph-
eral vertex x and y is a new vertex not in Gn_1; then, 

RK(Hn; t, 3) = (1 + t)S(n - 1) 

by Lemma 4.1(a) and (c). Let G be an n-vertex generalized fan and write DD(n) 
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for the rank polynomial of an n-vertex generalized fan with one peripheral edge 
of multiplicity 2. A single application of the rank polynomial factoring theo-
rem to one of £fs peripheral edges yields 

S(n) = RK(Hn; t, z) + DD(n - 1) = (1 + t)S(n - 1) + DD(n - 1). 

We obtain a recursive expression for DD(n) by applying the rank polynomial 
factoring theorem to one of the edges of multiplicity 2. If (? is an n-vertex 
generalized fan with one peripheral edge e of multiplicity 2, then G - e is an 
n-vertex generalized fan and G® e is an n - 1-vertex generalized fan with a 
peripheral edge of multiplicity 2 and a loop at the peripheral vertex. Then 

Win) = S(n) + t(l + z)DD(n - 1) 
by Lemma 4.1(b). 

Combining these expressions provides the stated two-term Lucas recurrence, 
and solving gives the closed formula, m 

5. APPLICATIONS 

Subgraph counts alone provide a measure of the connectedness of a graph. 
However, the recurrences in Section 2 can be generalized to compute probabilis-
tic connectedness or, alternately, two-cohesive connectedness. If p is the 
probability that a single edge is up, then Rp(n) is the probability that an n-
vertex generalized fan is connected. Let pp(n) be the probability of obtaining 
a spanning subgraph on n vertices that would become connected if a specific 
peripheral edge were added. Since the context is clear, we omit the probabil-
ity subscript. The following is a new proof of the main result in [17] using 
Lucas recurrences rather than generating functions. 

Theorem 5-1: Let x = q/p. R(n)s the probability that an n-vertex generalized 
fan is connected is given by: 

R(n) = p2(3x + l)i?(n - 1) - ph (x2 + x)R(n - 2 ) . 

It is remarkable that p(n) also obeys the same relation, that is: 

p(n) = p2(3x + l)p(n - 1) - ph(x2 + x)p(n - 2). 

Proof: Consider the n-vertex generalized fan G having peripheral vertex z and 
edge of attachment {x,y}. We measure R(n) as a product of the states of edges 
{xs z}9 {y, z) and the subgraph induced by G - z. The probability that G - z is 
connected is R(n - 1); the probability that at least one of {x9 z} and {z/, z} 
is up is 2pq + p2. The probability of a connected spanning subgraph in this 
case is R(n - I)(2pq + p 2 ) . Suppose, on the other hand, G - z is disconnected 
but the addition of {xs y] would connect it; if both {x9 z] and {y, z} are up, 
the resultant subgraph of G is connected with probability p2p(n - 1). Then 

R(n) = p2Q(n - 1) + (2p<7 + p2)R(n - 1). 

Similarly, 

p(n) = pqp(n - 1) + q2R(n - 1). 

Combining these formulas yields the stated recurrences which can then be solved 
for a closed formula for probabilistic connectedness. ^ 

Such formulas are extremely useful, since it appears that no other exact 
measures of probabilistic connectedness exist except for complete graphs [9]. 
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A formula for 2-cohesive connectedness can be derived similarly; in both in-
stances , generalized fans are the most reliable maximal series-parallel network 
(see [15] and [17]). 

The rank polynomial of a generalized fan yields a family of reliability 
measures. Let t = z/r and z = p/q, and let KC(n, k) be the probability of ob-
taining a subgraph of no more than k components. We multiply the rank polyno-
mial by r^v^q2n~3 and collect terms by superscripts of z to yield 

, 2 « - 3 E c ^ , - i ( E ) 
d ^' 

KC(n, k) = q2n-3 £ c d r ( M - i < fc>(§)1 

From this, we can write 

y2n~3 E " mr]j/l - « < 7,WE\i + J 

d 

where T(expression) returns 1 if its argument is true and 0 otherwise. 

Lastly, these techniques apply to other classes of graphs. Generalizing 
Sedlacek [19], Mikola [13] describes V^k) as the path VQV1V2 ••• ^{n-i){k-D a n d 

the edges wvi for i = 0, k + 1, 2(k + 1), ..., in - 1)(k - 1), i.e., rim edges 
are replaced with paths of equal length. Then 

] ( k ) ((k + 3 + K)n - (k + 3 - K)n) 
^ n } (2»K) 

where K ~ vk2+6k + 5 . We generalize Mikola's result by replacing spokes with 
paths of equal length. Furthermore, a generalized Mikola fan is obtained from 
a generalized fan by replacing all the interior edges and any two nonadjacent 
peripheral edges by paths of length j + 2 and all the other edges by paths of 
length k + 2. 

The connected spanning subgraph count of a generalized Mikola fan, G(n), 
satisfies the recurrence: 

G(n) = (k + 2j + 4)G(« - 1) - (J2 + 3j + 2)G(n - 2), 

where n is the index as in the definition. Solving this yields a formula for 
subgraph counts of yet another class of uniformly sparse graphs. 
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