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The natural density in the set R = {cFk : k = 0, 1, 2, . ..}, where c > 0, r > 1, 
and log10P is irrational, of the elements beginning with the first digit I is 
known to be 

We show that this property persists for any finitely additive, translation in-
variant density on sets of the form 

E = {ek = (ork + ak) % ak = o(r*)9 k = 09 1, . . . } , 

where a > 0 and log1 r is irrational. 
In particular, this includes the Fibonacci sequences. 

Let o and r be real numbers, such that o > 0 and r > 1, but r £ 10^ for q 
a rational number. Define 

R = {<?r*: fc = 0, 1, 2, . ..} 

and let R{1) be the subset of R whose members begin with the string of digits 
£ in the decimal representation, e.g., if c = 3 and r = 7, then 147 € i?(l) (147 
begins with digit 1); 147 is also in i?(14) (147 begins with a two-digit string 
14), and 147 € i?(147). If A is any subset of R9 define its indicator function 
as follows: 

(1 if ovk~x e A 
x(fc; A) =< 7 k = l, 2, 3, ... . 

10 if er*"1 i A 

Then 

which is a consequence of the fact that the set 

{(log10crk) mod 1 : k = 0, 1, 2, .. .} 

is uniformly distributed in the interval [0, 1). (See [4].) 
When the limit exists, 

1 n 

i i m - E x(&; 4) 
n -> °°  n /j = ! 

is called the natural density of A with respect to R. Although the natural 
density exists for ^ach i?(£)s there are subsets of R which do not have natural 
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density. Nevertheless, the natural density can be extended to all subsets of R 
in a way which preserves finite additivity and translation invariance [defined 
below as properties (Dl) and (D2)]. However, even with added restrictions such 
as scale invariance, such extensions are not unique. (See [1].) 

Now consider any density d on R which satisfies the following two proper-
ties: 

(Dl) For all A, B c R5 d(A u B) = d(A) + d(B) - d(A n B) (finite additivity). 

(D2) For all A c Rs d(A) = d(A+), where- A+ is the "successor set" defined by 
A+ E {crk : cvk~'1 e A} (translation invariance). 

Subsequent successor sets to A will be denoted by 

A+h = (A+h-l )+ = {oTk: crk-h e A}a 

Notice that A+ = vA and A+h = rhA. Note also that (D2) implies that d(A) = 
d(A+h) for all h = 2 , 3, 4, ..., and that d(A) = 0 if A is finite [since d(R) = 

1]-
Naturally., the natural density satisfies (Dl) and (D2) . 

We remark that any density defined on an algebra of subsets of R which 
includes the single point sets, {crk} for each k = 0, 19 25 ..., and which sat-
isfies (Dl) and (D2), can be extended to all subsets of R. We presume that any 
density considered in Theorems I and II is defined on the entire power set. 
Also, since finite sets and sets of density zero are unimportant in the sequel, 
we adopt the following definitions: 

If A, B c Rs say 

(i) A =d B if and only if d(A) = d(A n B) = d(B), and 
(ii) A cd B if and only if d{A) = d(A n B) < d(B). 

Theorem I: For any density d on R which satisfies properties (Dl) and (D2), 

d(RW) = log10(~-^). 

Proof of Theorem I: There are two key observations to be made about the first 
digit sets, f?(£). The first observation is that 

i?(l) =d i?(10) u i?(ll) u R(12) u ••• u i?(19) 

=d R(100) u i?(101) u ••• u i?(199), 

i?(2) =d i?(20) u i?(21) u ••• u i?(29) 

=d i?(200) u i?(201) u • • • u i?(299) , 

etc. Since R = i?(l) u i?(2) u • • • u i?(9) and R(j) n i?(£) = 0 for 1 < j < U 9, 
it follows that 

E d(R(j)) = 1 for fc = 0, 1, 2, ... . (1) 

,;= io* 

The second key observation concerns the successor sets of the first digit 

sets. In the case in which c and r are integers, they have the form: 
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i?(l)+ =d R(r) u R(r + 1) u • • • u i?(2p - 1) 

i?(2) + =d i?(2p) u i?(2p + 1) u ••• u R(3r - 1) 

(£+l)p-l 

RW+ =d U *(J). (2) 
Then 

(£+l)r-l 
d(R(l)) = E d(2?(j)) for I = 1, 2, 3, ... . (3) 

j = lr 

The idea of the proof is to tie together formula (1) and formula (3). However, 
if the decimal expansion of P does not terminate, R(r) is no longer a well-
defined object; thus, before proceeding further, it is necessary to generalize 
the notion of first digit sets. 

If 1 < x < y < 10^, define 

R{x9 y) = {u e R i x < 10 u < y for some integer j} . 

Note that i?(£) = i?(£, I + 1) . 
For notational simplicity, assume r < 10. Otherwise, in what follows re-

place P by P, defined by 

7 = ri<rllog"I,], 

where the brackets denote the greatest integer function, e.g. s [3.76] = 3. Then 

i?(l, P) + =d R(r9 p 2 ) , i?(l, p) + ?> =d f?(r\ P h + 1 ) , 

and equation (2) generalizes to 

i?(a?, z/)+ = R(xr9 yr). (4) 

By assumption (D2) of translation invariance, 

m - l m - 1 

md{R(l9 r)) = E ^(#CU *0+^) = E d(R(rh
9 rh+1)). (5) 

ft= 0 fe= 0 

By assumption (Dl) of finite additivity, and the fact that P < 10, 

d(i?(l, P ) ) + d(i?(r, P 2 ) ) + ••• + ^(i?^- 1, rm)) 
[rl - 1 

= E d(RW) + ^(i?([pm], Pm)). (6) 

£= 1 

Combining equations (1), (5), and (6) yields 
[r*] - 1 

[md(i?(l, P ) ) ] = E d(R(i)) + d(i?([pm], Pm)) = [m log10r]. (7) 
£= 1 

Since equation (7) must be true for any choice of m9 it follows that 

d(fl(l, r)) = log10r. 
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Now let 1 < x < 10. We show that d(R(l9 r)) = d(R(x9 xr)) . 

Case 1: 1 < r < x < 10. 

<Z(i?(l, a?)) = d(i?(l, P ) ) + d(R(rs x)) 
and 

d(R(r9 rx)) = d(i?(r, a;)) + d(R(x9 xr)). 

By (D2), d(i?(l5 a;)) = d(R(r9 rx)) 9 so the result follows. 

Case 2: 1 < x < r < 10. 

Again using d(R(l9 x)) = d(R(r9 rx)) 9 we have 

<f(i?(l, r) = d(i?(l, x)) + d(i?(a;, P ) ) 

= d(R(r9 rx)) + d(R(x9 r)) = d(R(x9 rx)). 

Hence, by repeated use of (D2) 9 

log10P = d(i?(l, P ) ) = d(R(xrJ'9 xrj + 1)) for any j > 0, 

so that 
w -1 

md(R(l9 r)) = £ d(R(xrJ9 xrJ + 1 ) ) 9 
j=o 

from which i t fo l lows t h a t 
[xr-]- 1 

md(R(l9 r)) + d ( i ? ( l , x ) ) = £ d(RW) + ^ ( [ a a ? 7 7 7 ] , X2^) ) , 
e= I 

which implies 

[TH log1QP + d(i?(l, a?))] = [m log1QP + logiox]. 

Thus 

d(R(l, x)) = log10ar. 

Since d(R(x9 y)) = d(i?(10Jxs 10J'z/)) by the definition of R(x, 
integers J, the results 

d(R(x9 y)) = logl0(z//x) for 1 < a: < z/ < 10a? 

and 

d(i?(£)) = log10(^p-) 

follow easily from equation (8) and assumption (Dl). Q.E.D. 

Now consider real numbers c and r as above and real numbers a^ 
1 9 2 5 ...5 such that ak = o(rk). Define 

E = {ek = (crk + ak) : k = 0S 1, 2S ...}, 
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and a corresponding set 

RE = {{ek - ak) :/c = 0, 1, 2, ...}. 

Define a bijective function f : E -* RE by 

f(ek) = ek - ak = cr*. 

Let the sets E(x9 y), E(l)9 RE(x9 y)9 RE(l) be defined as above. 
Assumptions (Dl) and (D2) , and the notions of a successor set, =d , and c^ 

all extend to E in a natural fashion (although it is no longer true that A+ = 
vA for the successor set of A c E). Sets of type E include linear recursive 
sequences of the form 

+ avw. k^n-k 

whenever the characteristic equation has a unique highest root. In particular, 
the classic Fibonacci numbers {0, 1, 19 2, 3, 5, 8, ...} occur when 

1 1 + \/5 1 ( I + V5\k 

No te that log ( -z j is indeed irrational. 

Theorem M: Let d be a density on E satisfying assumptions (Dl) and (D2) , as 
they extend to E. Then 

d(E(i)) = i o g i o ( i i l ) . 

Proof of Theorem I I: The density d gives rise to a corresponding density dR on 
RE9 defined by 

dR(A) = dif'HA)) for A c RE. 

Theorem I applies to dR. 
Since ak - o(rk)9 it is evident that, for any e > 0, 

f~1{RE{x + e9 y - e)) cd E(x9 y) cd rx{RE{x - e, y + e)). 

Hence 

logio(^Tr) = ̂ ^ ^ + £' y " e> < ̂ ^ ^ - e, y + e)) = iogio(|-±-|) 

and the result follows. Q.E.D. 

These results can also be obtained using the measure-theoretic techniques 
developed in [1], For a review of the literature on the First Digit Problem, 
see [5]. It should be noted that the base 10 logarithmic behavior is due to 
the convention of writing numbers in decimal form. If the numbers were written 
in base b9 then 

d(PW) = log^J^p-). 
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Another example of a density which satisfies (Dl) and (D2) is the loga-
rithmic density 

l̂og <4) = lim 

£ X(fe; A) 
k = l Z-T 

n i 

Like the natural density, there exist sets which do not have logarithmic den-
sity. The logarithmic density agrees with the natural density wherever the 
natural density exists, but there are sets which have logarithmic density which 
do not have natural density. This raises the following questions: Does every 
density which satisfies (Dl) and (D2) agree with the natural density on sets 
which have natural density? with the logarithmic density? with other summabil-
ity methods? 

ACKNOWLEDGMENT 

The authors wish to acknowledge the hospitality of The Rockefeller Uni-
versity a where much of this work was carried out. 

REFERENCES 

R. Bumby & E. Ellentuck. "Finitely Additive Measures and the First Digit 
Problem." Fundamenta Mathematicae 65 (1969):33-42. 
D. I. A. Cohen. "An Explanation of the First Digit Phenomenon." Journal 
of Combinatorial Theory (A) 20, no. 3 (May 1976):367-370. 
D. I. A. Cohen & T. M. Katz. "Prime Numbers and the First Digit Phenome-
non." Journal of Number Theory 18, no. 3 (June 1984):261-268. 
P. Diaconis. "The Distribution of Leading Digits and Uniform Distribution 
Model." Annals of Probability 5, no. 1 (1977):78-81. 
R. A. Raimi. "The First Digit Problem." American Mathematical Monthly 83 
(1976):521-538. 

1986] 7 


