
METRIC THEORY OF PIERCE EXPANSIONS 

J . 0 . SHALL1T 
University of Chicago, Chicago, IL 60637 

(Submitted October 1983) 

1. INTRODUCTION 

It is well known that every real number admits an essentially unique expansion 
as a continued fraction in the form 

a, + 1 a2 + .--

where the at- are positive integers (except for aQ, which maybe negative or 0) . 
Many mathematicians have been interested in the length of such expres-

sions; in particulars if x = p/q is rational, the expansion terminates with an 
as the last partial quotients and it is not difficult to show that 

n = 0(log q). 

See, for example, [14]'. This type of result is of particular interest because 
continued fractions are closely linked to Euclid*s algorithm to compute the 
greatest common divisor. 

Another question that has received attention is how the a^ are related to 
x, in particular, by equating probabilities with Lebesgue measure, we can con-
sider the a^ - a^(x) to be random variables, and ask: 

1. How are the a^(x) distributed? What are the means and variances of 
these distributions? 

2. Are the a^{x) independent, or "almost" independent? What does the 
distribution of a^(x) look like as i -> °°? 

We could also restate these questions in terms of iteration of an appro-
priate function. For example, if 

1 
1 

al ' 1 
a + 

2 s + ••• 

- and gW = - - _! 
X 

then it is easy to see that 

1 g(x) 
a9 

so that g(x) may be viewed as a "shift" operator. Here [x\ is the greatest 
integer function. 

This so-called "metric theory" of continued fractions has been studied 
extensively by Kuzmin [16], Levy [17], Khintchine [12], and others. 
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We can ask similar questions of other algorithms for expressing real num-
bers. Engelfs series 

was investigated thoroughly by Erdos, Renyi, and Sziisz [7], and later by Renyi 
[21] and Deheuvels [5]. 

Cantor's product 

\ ajl a2 / \ a3 / 

was investigated by Renyi [22]. 
There are also results for Sylvester's series [7] and other expansions of 

Cantor. For a summary of some of these resultss see [9]. 
The subject of this paper is an expansion that has not received much 

attention; it is of the form 

x . ± - ^ . + - i CD 

and is due to Pierce [19], who briefly examined its properties. Remez [20] 
attributes the expansion to M. V. Ostrogradskij and proves some elementary re-
sults. There are some metric theory results in [24], but they do not overlap 
with our results. We call an expansion of the form (1) a Pierce expansion, and 
in this paper we will demonstrate a connection between these expansions and 
Stirling numbers of the first kind. We obtain some new identities for Stirling 
numbers, and give a new derivation of a series for C(3). We discuss the dis-
tribution of the a^ = a^(x)s and the behavior of the related function 

f(x) = 1 mod x = 1 - x[l/x\9 

where by a mod b we mean a - b[a/b\. 
We also obtain some results on the lengths of finite Pierce expansions. 

2. ELEMENTARY CONSIDERATIONS 

In this section, we sketch some of the simple properties of Pierce expansions. 
The proofs are easy and all details are not given. 

Any real number x e (0, 1] can be written uniquely in the form 

X = H " e 8 (2) 
ai ci-la1 a±a2a3 

where the a^ form a strictly increasing sequence of positive integers, and the 
expansion may or may not terminate. If the expansion does terminate with 

(-l)n+1 

as the last term, we impose the additional restriction 
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This is to ensure uniqueness, since we could write 1/k as 

1 1 
k - 1 (k - l)k' 
We will sometimes abbreviate the expansion (2) as 

x = {a19 a2, a3, ...} 

where appropriate. 
Given a real number x9 we can obtain the terms of the Pierce expansion 

using the following algorithm: 

[Pierce expansion algorithm]: Given a real number x e (0, 1] , this algorithm 
produces the sequence of a^ such that x = {cc19 CL2, .«.}. 

P1 . [I ni t ial ize] . Set xQ *- x, set i <- 1. 

P2. [Iterate]. Set a^ «- [l/x._1J; set x^ <- 1 - ^^i_1-

P3. [All done?]. If x^ = 0, stop. Otherwise set i <- i + 1 and return to P2. 

If we run this algorithm on the rational number x - p/q9 it is easy to see 
that in step P2 we sill replace p by q mod p; this is less than p, and so even-
tually x^-0 and the algorithm terminates. On the other hand, if the algorithm 
terminates, we have 

x = {al9 a2, ..., an} 

and so x must be rational. 
(This argument provides simple irrationality proofs for some numbers of 

interest. For example, using the Taylor series for ex, sin x9 and cos x9 we 
find: 

1 _ e~l/a = {a, 2a, 3a, 4a, ...}, 

sin(l/a) = {a, 6a2, 20a2, 42a2, ...}, 

cos(l/a) = {1, 2a2, 12a2, 30a2, ...}. 

Since the expansions do not terminate, these functions take irrational values 
for any positive integer a.) 

Now choose x uniformly from (0, 1], and let Pr[X = o] be the probability 
that the random variable X equals c (thinking of probability as Lebesgue meas-
ure) . Let 

x = {a1$ a2, ...} 

be the Pierce expansion of x. Then 

Theorem 1: 

Pr[ai = b19 a2 = b29 ..., an = bn] = j - r -
^ J b1b2 ..- bn(bn + 1) 

Proof: Let b19 ...9bn be chosen. Now it is easy to see that the numbers whose 
expansions begin {bl9 Z?2, ..., bn} form a half-open interval whose endpoints 
are the two numbers 
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and 
x1 = {bl5 b2S ..., bn_l9 bn + 1}. 

(The first point is included9 but the second is not.) The measure of this in-
terval is just 

l I 1 
1 1 2l b±b2 ... bn(bn + 1) 

and the result follows. 

Theorem 2: 

Pr[an + 1 = k\ar - -n - 3 + l 

(Compare this with the result in [7] for Engelfs series,) 

Proof: To prove this9 we show it is true for all x that have Pierce expansions 
that begin {b15 b2* •••» ^n.ls j} where the b-i are specified constants. Then 

Pr[an+1 = k\ax = b19 .«*s an_x = bn_19 an = j] 

__ Pr[ax = 2^, .... £„_, = \_ 1 9 an = j , an + 1 = fe] 

Pr[ax = ZPI3 ..., a n - 1 = bn_1$ an = j] 

Now this conditional probability is the SAME for any specified prefix b1$ 
bn_1; hence9 it is equal to 

J + 1 
k(k + 1) 

if the bi are left unspecified. In particular^ the conditional probability in 
this theorem shows that the ai = a^ (x), considered as a sequence of random 
variabless form a homogeneous Markov chain. 

Theorem 3: 

o r 7 1 LnJ 
P r K = k] = (fe + 1 } , 

where is a Stirling number of the first kind. See9 e.g., [14] or [11]. 

Proof: By Theorem 19 we can compute the measure of the set of x whose Pierce ex-
pansions begin with a specified prefix. Let us fix an = k, and sum over all 
possible prefixes9 i.e., all strictly increasing sequences of positive integers 
of length n whose largest element is k. 

p*-[an = k] = J^ a1a2 • • • an ±k(k + 1) 
Kax< '•'<an_1<k (continued) 
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J _ 1 T ^ TW 
M°k(k+ 1) ~ f l c { 1 . 2 , e . . * 

\A\=n-l \B\=k-n 
i c u . 2 ? . , a - i } ™ ' *<* + 1} = B C { I , 2 ? . , k-i}« - 1 ) ! " * < * + 1} 

Yl n5 
(fc + l ) ! S C { i , 2 , T r ' . , k-i} 

\B\ =k-n 

and the proof is now complete if we observe that the sum over the product of 
elements of B is in fact the coefficient of xn in the polynomial 

x{x + 1) (x + 2) • • • (x + k - 1) 

which is just L a Stirling number of the first kind. 

(Some brief comments about the notation: in the proof above, A and B axe. 
sets. \ A \ is the cardinality of A. The sum is over all subsets with specified 
cardinality, and IL4 means the product of all elements in A,) 

We get two interesting corollaries: using a theorem of Jordan [11] we can 
estimate the distribution of the an. We have 

and so we get 

Pr\a « kl ~ O-ogfr + Yr- 1 
rrLan KJ ^(k + l)(n - 1)! 

where n is fixed and k -*• °°  and y is Euler's constant. Compare this with the 
similar result of Bekessy [2] for Engel?s series. More detailed asymptotic 
results can be obtained by using the results of Moser and Wyman [18]. 

Also, we observe that the events an = 1, an = 2, ... are all disjoint and 
exhaust the space of events. Therefore, 

, [k
n] 

k?o <* + 1) ! "
 l' (3) 

which is another derivation of the formula due to Jordan [11, p. 165]. 
In the next section, we derive some results on series involving Stirling 

numbers. 

3. IDENTITIES ON STIRLING NUMBERS 

Theorem k: 

[i] _ 4T- = £(w + 1) 

where £(&) is Riemann's zeta function. 

Proof: This is a result due to Jordan [11, pp. 164, 194, 339], 
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Theorem 5-

Proof: The proof of the first equality is just formula (3) above * To verify 
the second9 we use induction on j s holding n fixed. It is easy to verify the 
case j = 1. Now assume true for j; we show the identity holds for j + 1. We 
have 

1 V 1 LttJ a i f fji 

PI 
Now s u b t r a c t -r-.—;—T-T-T from both s i d e s t o g e t : ( j + 1) ! 

A (* + 1)! \ j ! - t - iUJ / (J + 1) 

\U + Di ^ / B J ) + ((«/ + Di f? ! UJ) " (J + i)! 

(J + 1) ! ̂ A L i J ~ [i ~ J + U J j " (J + 1) ! 
i f r«7 + n 

(J + D'itTiL i Js 

where we have used telescoping cancellation and the well-known identity on 
Stirling numbers 

m - p v}-i i j -
This completes the proof of Theorem 5» This is apparently a new identity on 
Stirling numbers. 

Michael Luby made the following clever observation (personal communica-
tion) : It is possible to prove Theorem 5 without the use of inductions by In-
terpreting the left and right sides combinatoriallys in terms of the an* The 
left sides in fact* is just 

Pr[an > j] 

while the right side can be shown to be 

Pr[(ax > j) or (a± < j and a2 > j) or (a19 a2 < j and a3 > j) • • • ] . 
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Theorem 6: 

\k] 
f g(fc)(fc+ 1)t - ?(2) + t(3) + ••• + C(n + 1) 

where #(fe) is the &th harmonic number, 

JJ(fe) = l + | + V " + f 

Proof: 

fc-

PI 

where we have used Theorems 4 and 5. 

The author would like to express his thanks to Richard Fateman and the 
Vaxima version of the MA.CSYMA computer algebra system—an early version of 
Theorem 6 was suggested by experimentation with Vaxima! 

Theorem 7: 

Proof: See [11, p. 339]. 

We can now give a new derivation of a formula for £(3) due to Briggs et 
al. [3]. Noting that 

[*] = H(k - l)(fe - D! 
we get ,-_ 

or, adding T^ —r- to both sides, we get 
k = i k 3 

2C(3) = E ^ ' 
k= 1 K 

Many similar formulas can be given; for example, by appealing to Theorem 6, we 
can obtain 

f. g(fc)(g(fe - 1) - 1) _ r n l 

fc~! fc<fc + 1) " C W < 

See also [4], [10], [13], and [23]. 

BOi - 1) 
k2 
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Theorem 8: 

PI 
gm + D-(, + 1)T 

Proof: 

yE(k + n ["J _ f "f11 ["] 

. r*i pi 

= 1 +
i? i J -?r( j + D! n + 1 

In the next section, we use these identities on Stirling numbers to derive 
estimates for the expected value and variance of quantities connected with an. 

h« EXPECTED VALUES AND VARIANCES 

We will use E[X] and Var[X] for the expected value and variance of the 
random variable X. 

We are interested in how the an are distributed. However, the an are dis-
tributed such that E[an] = °°  for every ne It is reasonable to expect that the 
quantity log an rather than an gives more information. 

Theorem 9: 

(a) E[H(an)] = c(2) + C(3) + ••• + £(n + D 

(b) E [ l o g an] = n + 1 - y + 0(2~n) 

Proof: 

ra (a) E[H(an)] = £ g(fc)(fe + 1)! = C(2) + C(3) + '" + C(" + 1} 

using Theorem 6. 

(b) To prove part (b) we use the famous estimate 

H(k) = log k + Y + o(£), 
and therefore, using Theorems 6 and 7, 

E[log a J - E[5(a„)] - y + ° (E[^J) 

= C(2) + S(3) +-•• + C(n + 1) - y + 0(C(w + 1) - 1). 
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Now it is easily shown that 

C(2) + 5(3) + ••• + C(fc) = k + 6(2-*) (4) 
and 

e(fc) - i + e(2~fe); 

so, by substitutions we obtain the desired result. 

Similar techniques allow us to calculate the variance, 

Theorem 10: 

(a) Var[#(an)] - n + 0(1) 

(b) Var[log an] * n + 0(1) 

Proof: We find first that p,-, p*-. 

(a) £[*<*„)*] = £*(*>* ̂ i J ^ = £ ( .E^f^ + ^JT^IJT 

_ A / 2g(j - 1) 1 \ A LnJ 

where we have used the fact that 

HU)Z - HU - I)2 + md •" X) + -^ 
t/ J 

and Theorem 5. Note that H(0) = 0 by definition* 
On the other hand9 we have already seen that 

PI PI 
and therefore9 

tffiWft • A«+'+0(r"1)) • ^+ 0 < 1 ) -
Hence9 we f ind 

/SWAB]-»••*•• »«>• 
The left side of this equation looks very much like the right side of equation 
(5). In fact9 it is easy to show that their difference is bounded by a con-
stant that is independent of n, We have 

M^^ • * - m ) AAK] ^ ( ^ ^ + ? - m ) «> 
30 [Feb. 



METRIC THEORY OF PIERCE EXPANSIONS 

Now the sum on the right side of (6) can be computed exactly: 

y (2HU - 1 ) J_ _ 2ff(j)\ = A /2ff(j - 1) , _i_ _ 2HU - D _ 2 \ 
A \ -7 i2 3 + x / J - I V ^ i 2 '̂ + x <?0' + i ) / 

= Y (2Hti - 1) _1__ _ 2 \ 

- C(2) - 0(1). 

Thus, we conclude that 

ElH(an)2] = n2 + 3n + (9(1). 

On the other hand9 from Theorem 9* we see that 

E2[#(an)] = n2 + In + 1 + 0(n2~n) 

and therefore, 

Var[ff(a„)] - n + 0(1) 

which is the desired result* 

(b) To prove part (b)» we use the fact that 

H(k) = log k + 0(1) 
to get 

Var[log an] = Var[tf(a„)] + 0(¥ar[l]) = n + 0(1). 

This completes the proof. 

In a similar fashion, we can obtain theorems about the expected values of 
various functions of the an» We give some unusual examples* 

Let f(x) = 1 mod x = 1 - x[l/x\. Then it is easy to see that if 

x = {alS a2$ ..„} 
then 

/(a?) = {a2§ a3* ...}. 

Let us write f^2\x) = f(f(x))s etc. Then we have 

Theorem 11: 

E[/(n)Gr)] «1( M+ 1 - c(2) - C(3) - • • • - C(n + D) - 9(2"^2) 

Proof: Suppose an = k. What is the expected value of f^n\x)2 If we restrict 
our attention to the half-open interval that contains all numbers whose Pierce 
expansions begin 

1986] 31 



METRIC THEORY OF PIERCE EXPANSIONS 

{al5 a2$ ..., an_l9 k}, 

then it is easily seen that f^n\x) is linear on this interval. The minimum and 
maximum values that f^n\x) attains are 0 and l/(k + 1) respectively; hence the 
expected value of f^n\x) on this specified interval is l/[2(/c + 1)]. But this 
is independent of the choice, of a19 a2, ..., <zn_i» hence the expected value of 
f(n)(x) given that an = k is l/[2(& + 1)]. Therefore, 

PI / PI 

= |(n + 1 - 5(2) - CO) - •-• - C(n + 1)), 

where we have used Theorems 7 and 8. 
From equation (4), this quantity is 0(2"n+2)9 and the proof is complete. 

It is of some interest to note that Theorem 11 is a generalization of a 
result of Dirichlet [6]. He stated that 

n 
k = l LK- 12 * 

We can derive this easily. From Theorem 11, we have 

TT(2 - £(2)) = n I 1 mod x dx = I n mod nx dx = — I n mod x dx 
2 Jo Jo nJo 

i rn i r 
= — I n - xln/xldx = n J xln/xldx, 

nJQ
 nJo 

and we get the desired result by approximating the integral with a sum. 

Theorem 12: 

k=lak 

converges for almost all x (i.e.9 for all but a set of measure 0). The expected 
value of the sum is 1. The set of exceptions 

flJU diverges 
k 

is uncountable and dense. 

Proof: From Theorem 7, we have 

E[J_] - c ( „ + i ) . i < 2 i - » . 

and it is easily seen that the variance Var is also < 21~n. 
L^nJ 
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Then, by Chebyshev?s inequality, 

Pr ol-n > y-nIk 
- n i l 

Now, by the Borel-Cantelli lemma, with probability 1 only finitely many of the 
events 

1 _ o l - n ~ > p - n / 4 

occurj and so the series converges almost everywhere. 
We also have 

k=l an 
E (e(fc + i) - i) = l. 

k = l 

(See, e.g., [11, p. 340].) This proves the result on the expected value. 
Now we show that the set of exceptions is uncountable. Let the real num-

ber x in the interval (0, 1) be written in base two notation, 

where each e^ = 1 or 0. Then associate with each such x the real number whose 
Pierce expansion is given by 

h(x) = |l + e19 3 + e2, 5 + e3, ...I. 

Then each of these numbers h(x) is distinct by the uniqueness of Pierce expan-
sions, and for each h(x) we have 

n i n i 

k= l a k k=l LK 

and so the series diverges. 
The proof that the set of exceptions is dense is left to the reader. 

Theorem 13: 

E / (fc)(*) 
k = l 

converges for almost all x. The expected value of the sum is y~ « 
of exceptions 

—. The set 

£ f (x) diverges 
k = l 

is uncountable and dense. 

Proof: We prove only the result on the expected value, leaving the rest to the 
reader. 

:\ t f{k\x) 
lk = l 

= E 4(k + i - E a j ) = f E i - E (c(J) - i) 
J = 2 ,7 = 2 

(con t inued) 
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i t ( . -"t '£^)- |£( i -£ lH;_lf-) 
I v- V 1 = I V 1 y 1 = I y 1 

=|(C(2) - 1), 

which is the desired result. 

5. DISTRIBUTION OF THE an: METHOD OF RENYI 

So far we have shown that log an has an expected value that tends to n + 1 - y 
as n approaches °°. We have also seen that the variance is small. In fact5 it 
is possible to prove much stronger results; for example9 that 

lim a1/n = e 
n + °°  

for almost all x. We will use a method employed by Renyi in his analysis of 
Engelfs series [21]. We start by identifying some new random variables and we 
show they are independent. 

Define 

f N (l if k appears in the Pierce expansion of xs 
K (0 otherwise. 

Then we have 

Theorem 14: E[ek(x)] 
kwi -^Tl 

Proof: 

[n] 1 E[ek(x)] - ^ — j - — = (k + i)f ̂ [J - {k +"1}! ^ T T T T 9 

since the events a^ - k and a^ = ft are disjoint if i ^ j. 

Theorem 15: The random variables ek(x) are independent. 

Proof: Let 

^1 = l9 "̂2 = 2 9 -••9 &n = ®n 

represent an assignment of O's and l?s for the values of e^. Let hi (Ki<fc) 
be such that 6^ = 1 and all other values of 6j are 0. Without loss of gener-
ality, assume that 6n = 1. Then the probability that the events 

£1 = 6 l' Cl = 6 2 5 "••» Cn = 6 n 

simultaneously occur is just the probability that the Pierce expansion for x 
begins 2? , Z?2s ...9 bk, which we have seen is equal to 

1 
b1b2 --• bk{bk + 1) " 
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On the other hands we have 

Pr[ef - SA 

Let us compute 

n p r [ £ i = SA. 

\ ^ 
U + i 

1 

U +1 

if 5; - 0S 

if 6̂  = 1. 

(7) 

In the numerator of (7) we have those i corresponding to the 6̂  that equal 
0; in the denominator we have (n + 1)!. By canceling in the numerator and de-
nominators we see that the value of the product (7) is just 

1 
b±b2 bk(bk + 1) * 

which shows the independence of the e^ 
It is also easy to see that 

Var[e, ] 1 1 

k + 1 (k + I)2 

Now9 let \lN = VN(x) denote the number of terms of the sequence an = an{x) 
that are < N. In other words, put 

N 

k = 1 

Then we see immediately that 

E[y 
and 

*1 %? 1 ^TT= l o ^ + Y - 1 + 0 ( l ) 
Var[^] - & (*77 " T ^ M " log " + Y - T + °(i) 
We can prove the strong law of large numbers for the random variables ek* 

We need the following general form of this law [21]: 

If £i» 525 oo* a r e independent nonnegative random variables with finite 
expectation Ek = E[£fc] and variance Ffe = Var[£fc] and if putting 

one 

and 

AN -

has 

lim 
PJ+co 

also 

N 

• E 

A N = 

£* 

: OO 

»-i ^ 
<«. 
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then with probability 1 we have 
N 

k= l 
l±tn~A = 1-

The conditions of this theorem are fulfilled for £fc = e^, since 

1 _ 1 
^ N + 1 N + l2 

^ = i(log ^ + y - 1) 

converges by comparison with the integral 

1 7 -1 dx f-
J x(log 2?) 2 log X 
Thus we obtain 

Theorem 16: For almost all x we have 

lim 
/-«, log tf + Y - 1 

Using ya = n5 we obtain 

lim a3 ,1/n _ 

for almost all x. 
[We can easily get a similar result for iterates of f(x) = 1 mod x. Since 

T V - < /(n)<*> < 1 
1 + an+l 

we find 

llm(/<n><a;))1"'=i 

for almost all a;.] 
We can use Ljapunov?s condition [8] to obtain a central limit theorem for 

the a„. We have 

and 
Ete*3] = 

E[e£] 
Var[y f c ] 

1 
A: + 1 

i s b o u n d e d . A l s o VVar []ik] -> «>. H e n c e , we f i n d 

Theorem 17: 
' u j - l o g ff 1 

Vlog 71/ J 

36 
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Now, noting that 

Pr[\iN < n] = Pr[an > N] 9 

we see that an equivalent statement of Theorem 17 is 

"log an - n 
lim Pr 

Vn 
< y $(2/). 

As a corollary, we get 

Lim V -£* ta 
_(/c + 1)! $(B) - $(a). 

This is similar to the result 

k= logn + RVlogn 
iim y a = $(g) - $(a) 

/c = log n + avlog n 

g i v e n i n [ 8 ] . 
Similarly, as the conditions given by Kolmogoroff [15] for the law of the 

iterated logarithm are fulfilled for the variables ek, we get 

Theorem 18: For almost all x9 

\iN - l o g N 
l i m s u p ~ ~ I I I I I I I Z I I Z I Z Z Z Z Z Z Z Z Z Z Z Z : = 1 

N^°° V2 l o g N • l o g l o g l o g N 

and 

l i m i n f 
y^ - log N 

N^°° A/2 l o g N • l o g l o g l o g N 

or, stated equivalently, 

log an - n 
lim sup 

and 

lim inf 

y/ln • log log n 

log an - n 

log log n 

SOME RESULTS ON FINITE PIERCE EXPANSIONS 

In [7], Erdos et al. put E1(a9 b) = n, where 

a 1 . 1 . 1 

?1<?2 ••• ^n 

(an expansion into Engel's series) and ask for a nontrivial estimation of 
E1(a9 b). 

1986] 37 



METRIC THEORY OF PIERCE EXPANSIONS 

We prove two results on the length of finite Pierce expansions. Unfortu-
nately, it does not seem possible to use our techniques for Engel*s series. 

Let us put L(p, q) = n, where 

P = J L _ + . . . , (-Dw+1 

q ax a1a2 a1a1 — an ' 

Then we have 

Theorem 19: L(p9 q) < iVq. 

Proof: Let us write 

P _ r , 
t<3, , CL2 s ... 9 u-^J 

and, as in the Pierce Expansion Algorithm, put p = p and 

ct = U/p.J, 

p. , = <? - a.p. . 

Without loss of generality, we may assume that a± = 1. For otherwise we have 

^ " ^ - I T 

which is a longer Pierce expansion. 
Then suppose p ^ an. Since dnpn = qs we have a n ^ vq. But the a^ are" 

strictly increasing, so n < v^. 
Now suppose pn K an. Since the p. are strictly decreasing, and the a^ are 

strictly increasing, we see that p^ - a^ is a strictly decreasing sequence. 
But p - a1 ^ 0 since a2 = 1, and pn - an < 0 by hypothesis. Hence, there must 
be a unique subscript ?c such that 

pv - ap > 0 
but 

z - cr < 0. 
*fc + l fc + i 

Then, since p . a. K. q for all i, we see that 

az, < Jq and p < y/q. 

By the monotonicity of these sequences, we see that k ^ vq and n - k < vq. We 
add these inequalities to get n < 2v^, which is the desired result. 

Unfortunately, this bound is not very tight. For example, 

Y~ = {1, 2, 3, 4, 5, 10, 11, 14, 17, 61, 67, 123, 148, 247, 371, 743}. 

This is the longest Pierce expansion with q <1000. We see that n- 16, but our 
estimate guarantees just n </54. 

It seems likely that L(p, q) = C(log q); we cannot expect a much better 
lower bound. For example, we have the following theorem. 

Theorem 20: There exist infinitely many a with L(p, a) > -z ~-"— . 
^ ^ ^ log log a 
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Proof: The proof is constructive * Let q = nl5 and set 

P \ 2! + 3! + nl )m 

Then we have 

— = {15 2, 3S ..., n - 35 n - 2S n}s 

and therefore9 L(p3 q) ~ n - 1. 
However, it is easily shown thats for n sufficiently large9 

- \ log nl 
n - 1 > -z f r 

log log nl and. the desired result easily follows. 
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