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1. INTRODUCTION

For each nonnegative integer #n, r;(n) denotes the cardinal number of the

set:
3|, _ .2 2 2
{(x,, z,, z,) €Z |n = z% + x2 + =z},

We here propose to express r; in terms of simple divisor functions, defined as
follows.

Definition: For each pair of positive integers %, n, with 7 < 2, §;(n) is de-
fined by

s;(m) = L (-)Wd-1L,
dln
d= 7 (mod 3)

Theorem 1: Let n denote an arbitrary positive integer.
(i) If n = 3m?, for some positive integer m, then
ry(n) =2+ 6(-1)"[6,(n) - §,(m)]
+ 12(—1)”'}:1(—1)”[62(11 - 37%) - §,(n - 379)].
i=
(ii) If n is not of the form 3m?, then
r,(n) = 6(-1)"[8,(n) - &, ()]
+ 12(-1)" _Zl (-D)"[6,(n = 32%) - &, (n - 39)].
i=
In both statements (i) and (ii), summation for the sums indexed by 7 extends
over all values of 7 for which the arguments of §,; and §, are positive.
In §2, we prove this theorem. Our concluding remarks are concerned with

comparison of the present representation of r, with the classical representa-
tion due to Dirichlet.

2. PROOF OF THEOREM 1

Our proof is predicated on the quintuple-product identity

fil (1 -2 - az™) (1 - a 2™ 1) (1 - a2 1) (1 - q~222""1)

= f: xn(3n+1)/2(a3n _ a-sn—l)’ (1)

-0

which (as observed by Carlitz and Subbarao [1]) is derivable from the classical
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triple-product identity

1?[(1 - @) (1 + ax® ) (1 + a2l = 3 znlign, (2)

Both identities are valid for each pair of complex numbers a, x such that a # 0
and |x| < 1. We shall also require the following classical identities associ-
ated with the names of Euler, Gauss, and Jacobi.

fjl(l - 2?1+ 2 = 1, (3)

1?(1 _ xzn)(l + xZT’L-l)Z = i xnz. (4)

Identity (4) is an easy special case of (2) (simply set a = 1), but we list it
separately to observe that the cube of its right side generates r

2 3°
In (1), let a +~ a

and multiply the resulting identity by a to get:
(@-aHHa -z -a2™ 1 - a 22" - a*x? (1 - a *x?" 1)
1

= 00
=q zxn(3n+1)/2a6n _ a—l Z xn(3n+ 1)/2a-GrL

-0 - o0

a1 (1 - ) (1 + ax® 1) (1 + a8z "2)
1

-a? fi(l -2+ a1+ a2’ 2. (5)
1

Here we have used (2) to express the infinite series as infinite products. For
the sake of brevity, put

F(a) = F(a, x) = fi (1 - a22™ (1 - a 2™ (1 - a*z?" 1)1 - a "z "1y,
1
G(a) = G(a, x) = fi (1 + a®2¥ (1 + g b2%"-2),
and '
H@) = Ga™ ).

Hence, (5) becomes

[1-29@-abHr@ = I1d -2 {a6@ - a B @)}
1 1
We now differentiate the foregoing identity with respect to a to get:
- 2){ +a?)F@ + (a-aHF (@)}
1
= (-2 {6 +a?H@) + aG'(a) - a *H'(a)}. (6)
1 .

Sequentially, we use the technique of logarithmic differentiation to evaluate
G'(a) and H'(a), substitute these evaluations into (6), let a - 1 in the result-
ing identity, and finally cancel a factor of 2 to get:
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ﬁ (1—xn)3(1—x2n_l)2
1

P © n-1 © In-2
=1 (l—x3")(1+x3"‘1)(1+x3"'2){1+6 (Z L y = )}
1 L1412 1 142372

-1 (1—x3”)(1+x3"'1)(1+x3"'2){1+6i [6,(n) - él(n)]x"}-
1 1

Now,
ﬁ (l_xn)3(1_x2n—1)2
1 (1_xBn)(l_._xan-l)(l_’_xSn—Z)
- ﬁ (1-2m)3(1-x2n-1)3. A+’ A+ DA +x3772)
1 (1_xSn)(1+x3n~1)(1+x3n—2)
[by Euler's identity (3)]
= {f I:a(n)(_x)n} ‘1 .lL”?a_n
0 1 1 - x3n
Hence,
© © - 3n ©
Ery o = 1 222 hiv6 £ 15,00 - 6,00107]
0 1

11 + 2%

{1+z ?(-xa)”z}{l+6$ [8,(n) - 61(n)]m"}.

Now, letting x - -x, we have
Yr,mzr=1+2 % ¥ + 6 L (-1)"[6,(n) - 8, (m)]zn
0 m=1 n=1

+12 £ DT CDFL8,0n - 360 - 8,01 - D)1
n=1 i=

[Here we adopt the convention that §;(k) =0 whenever K < 0, 7 =1, 2.]

Equat-
ing coefficients of like powers of x, we thus prove our theorem. [Note that
r_ (0) = 1.]

3

CONCLUDING REMARKS

There is a somewhat complicated formula for r,(n) [n € Z%] due to Dirich-
let. This is:

=21 -1
_16 1 1 1 1 < p ' n 1) >
= — K(=4n) « 1 + =404 + —(1- ,
ry () = > nt2 x, (K(-4n) prl1< > Tt (=)

where the definition of T is p2¥|n, but p2("* V) n,
& [(-4n\1
K-ty = ¥ (Z2)2
mz=:1 m /m’
Here, and above, (:%E) is a Jacobi symbol. And
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il

0 if 47% = 7 (mod 8),
X, () =427%, if 4% = 3 (mod 8),
3.27179 if 4% =1, 2, 5, 6 (mod 8),

and here the definition of ¢ is 4“!7@, but 44%1 ,}' n. This formula (among others)
is given by Hua [2, pp. 215-216]. First of all, it is far from obvious that
this expression for r,(n) is an integer, whereas our expressions of Theorem 1
are clearly integral. However, Dirichlet's formula permits an easy proof of
the fact: ry(n) > 0, if and only if, n is not of the form 4%(8m + 7). At the
moment, the author has not seen a way of deducing this fact from Theorem 1.
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