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1. INTRODUCTION 

It is well known that T (z) is an analytic function of z that gives n\ when 
z - n + 1. It is reasonable to look for a similar function for the Fibonacci 
numbers Fn. Several such functions are known (see Bunder [2] where further ref-
erences are given)s but the formula we will derive is more general than any of 
those obtained earlier. 

To be specifics we are looking for an F(z) with the following properties: 

(a) F(z) is an analytic function (perhaps entire)s 

(b) F(z) is real valued for all real z3 

(c) F(n) = Fn9 the nth Fibonacci number for all integers n5 

(d) For z in the domain of analyticity we have 

F(z + 2) = F(z + 1) + F(z). (1) 

It is clear that if F(0) = FQ = 0 and F(l) = F± = 1, then equation (1).im-
plies that F(n) = Fn for every positive integer n. This follows immediately 
from the defining equations F0 = 09 F1 = 1, and Fn + 2 = Fn+l + Fn. In fact, this 
latter relation can be used to define the Fibonacci numbers for negative inte-
gers. 

If F(z) satisfies the functional equation (l)sthen so does each derivative 
F (z), m = 19 29 ... . This suggests that we try eRz as a solution9 for some 
number R. When eRz is used in (1), we find that it is a solution if and only 
if eE is a root of 

x2 = x + I, (2) 

Using the standard notation for the roots of (2), we have 

1 + 7 5 „ 1 - >/5 
a 

and hence 

(3) 

R = In a or R = In 3 = In | 31 + (2q + 1)TT£, q = 0S ±1, ±29 . .. . 

Using the linearity of (1) (see Spickerman [4]), it is clear that if p and q 
are integers9 and C1 and C2 are arbitrary real numbers, then 

f(z) = c1ez(lna + 2P^ + c2ez(ln\^ + (2^+1)7ji) (4) 

satisfies the functional equation (1). Now f(z) is an entire function but it 
is not real valued for every real a. To remedy this defect, we consider 
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This function is not an analytic function, but if we replace a by a; we obtain 
the real function 

F(x) = C1exlnacos 2pi\x + C2exln\^cos(2q + 1)TO. (5) 

If we now replace x by z in (5) , we have a function that satisfies the 
conditions (a), (b) , and (d) . The initial conditions F(0) = 0 and F(l) - 1 
force the selection C1 = l/i/5 and C2 = -l/i/5. Then, finally, the function 

F(Z) =—[6
2 l n acos 2pTTs - e2lnl3icos(2^ + l)i\z] (6) 

has all of the properties (a), (b), (c), and (d) that we wish. 
Equation (6) was given earlier by Spickerman [4] and is an entire function 

that gives the Fibonacci numbers for integral values of z. 

2. THE MAIN THEOREM 

Equation (6) gives a countable infinity of functions that satisfy the con-
ditions (a), (b), (c), and (d) , and we may ask if we now have all such func-
tions. In fact, we shall soon see that (6) gives only a tiny portion of the 
functions that satisfy (a), (b), (c)-9 and (d). We first observe that if a and 
3 are the roots of (2) and m is an integer, then 

G(z) = ezlnQL sin 2rrmz + e2ln!31 sin(2m + l)itz (7) 

satisfies the three conditions (a), (b), and (d). Further, G(n) = 0 for every 
integer n. 

We now take linear combinations of the functions F(z) and G(z) defined by 
(6) and (7). To simplify the presentation, we impose a condition on the coef-
ficients to ensure that we obtain entire functions. 

Definition: We say that the real sequences {Am}, {Bm}, {Cm}, and {Dm} satisfy 
condition E if 

t Cm = 1, t c « - l (8) 
m= 0 rn= 0 

and 
t,Amemz

9 tBme™9 t Cme™, £ Dmemz (9) 
w = 0 m = 0 m-0 m=0 

are all entire functions. 

These are very weak restrictions. For example, (9) is trivially satisfied 
if all but a finite number of terms in each sequence are zero. The linearity 
of equation (1), and our earlier work, immediately give 

Theorem 1: Let {Am}, {Bm}, {Cm}9 {Dm} satisfy condition E9 and let a and 6 be 
defined by (3). Then each one of the functions 

F(z) = — E Cmezln(Xcos Irrmz - — E VmezlnWcos{2m + 1)TTS + (10) 
^ 5 ^ = 0 ^5 m = 0 

(continued) 
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+ E Amezlnas±n 2mi\z + f) Bmesl^^s±n(2m + l)i\z 
777= O m= 0 

satisfies the conditions (a), (b), (c)9 and (d). 

It is clear that (1) gives an uncountable infinity of suitable functions. 
We still have an uncountable infinity if we set all coefficients equal to zero 
except C09 C1 = 1 - C0, DQ5 and D1 = 1 - DQ. 

Do we have all such function? In other words, given a function with prop-
erties (a)s (b), (c), and (d), is it one of the functions described in Theorem 
1? This is an open problem. 

The Fibonacci numbers satisfy many interesting relations, see, for example, 
Bachman [1, 11:55-96], Vorobfev [5], or Wall [6], Many of these generalize, 
and we cite only a few here. 

If F{z) is any one of the uncountably many functions given in Theorem 1, 
then9 for all zs 

N 
E F(z + k) = F(z + 7^+2) - F(z + 1), (11) 

k = 0 

and 

N 
£,F(z + 2fc - 1) = F(z + 2N) - F(z)s (12) 

k=l 

2N 
£ (-l)kF(z + k) = F(z + 2N - 1) - F(z - 2). (13) 

k = o 

3. A GENERALIZATION 

One natural generalization arises when we replace F = F + Fn by 

Fn+2 = rFn+1 + sFn 

and impose the initial conditions FQ = a and F± = b* To extend the work of §1 
and §29 we look for entire functions that are real on the real axis, give the 
generalized Fibonacci numbers at the positive integers, and satisfy the func-
tional equation 

F(z + 2) = rF(z + 1) + sF(z) (14) 

for all z. Here we restrict r, ss as and b to be real. We preserve the basic 
notation of §2 and set 

r + Vr2 + 4s n r - Vr2 + 4s 
a = — 2 

the two roots of 

x2 = rx 

(15) 

(16) 

[Compare this equation with equation (2).] 
For simplicity9 we assume that a and 6 are distinct real roots, and this 

implies that r2 + 4s > 0. We also assume that s ^ 0 because, if s = 0, equa-
tion (14) reduces to F(z + 1) = rF(z) for all z9 and the generalized Fibonacci 
sequence is then a geometric sequence. If v and s are positive, then a>0>(3°  
We consider this case first. 
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Theorem 2: Suppose that a > 0 > 6 , where a and g are given by (15), r and s are 
real numbers9 and the sequences {Am}9 {Bm}9 {Cm}, and {Dm} satisfy condition E. 
Set 

Hz) = E " a g * » b Cme*lnacos 2rrmz + E a a " / P^2lnlelcos(2m + 1)TT3 

+ E Wwe2lnasin 27777TS + B^ln'3lsin(2m + Dra). (17) 
m= 0 

Then: 

(a) F(z) is an entire function; 

(b) F(z) is real on the real axis; 

(c) F(z) satisfies the functional equation (14); 

(d) for all positive integers F(n) ~ Fn9 the nth generalized Fibonacci num-
ber defined by FQ = a9 F± = b9 Fn + 2 = rFn + 1 + sFn, n = 0, 1, 2, ... . 

We omit the proof because it follows the pattern set forth in §2. First, 
one shows that each individual term satisfies (14), and then one applies the 
linearity property. A simple computation shows that F(0) = a and F(l) = b. 
Parker [3] obtained a simplified version of (17) in which only two of the coef-
ficients are different from zero. 

If r > 0 and s < 09 then a > 3 > 0 . In this case9 we have 

Theorem 3-' Suppose that a>|3>0 and the sequences {Am} 9 {Bm}9 {Cm}, and {Dm} 
satisfy condition E. Set 

F(z) = E "aB t b Cme*lnacos Irrmz + £ ^ ~a Dmezln® cos Irrmz 

+ E (i4TOealnasin 2/?7Trs + £OTeslnB sin 2rm\z). (18) 
m= o 

Then F(s) satisfies conditions (a) 9 (b)9 (c)9 and (d) of Theorem 2. 

The proof is similar to that of Theorem 2; thus, it is omitted here. 

If v < 0 and s < 0, then 0>a>$. In this case, we replace a and 3 by |a| 
and |@|» respectively, in (18). Further, cos 2mi\z is replaced by cos(2m + 1)TTS 
and sin 2rrmz is replaced by sin(2m 4- l)i\z. The details are left to the reader. 

In each of the three cases, there is an uncountable infinity of functions, 
each satisfying the conditions (a), (b), (c), and (d). 

4. CONCLUDING REMARKS 

We return to the original Fibonacci sequence 0, 1, 1, 2, 3, 5, ... treated 
in §§1 and 2. If a and 3 are given by (3), then, as is well known, 

Fn =4:(a" - gn). (19) 
V5 
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This formula for Fn is called Binet's formula. If we replace the minus sign by 
a plus sign in (19), we obtain 

Ln = an + 6n. (20) 

These numbers Ln9 n = 0, 1, 2, ..., are often called the Lucas numbers [5, 6]. 
Now LQ - 29 L1 - 1, and Ln+2 = Ln+i + ^n f° r n ~ 0» 1» 2, ... . Consequently, 
Theorem 2 gives a set of uncountably many entire functions for the Lucas num-
bers. Indeed, set a - 2 and b = 1 in (17) to obtain 

z2§+k _ ! and £ ° L ^ = a - 6 a - 3 K ' 
Then F(n) = Ln for all n. 

Finally, we note that Binetss formula can be extended to cover the gener-
alized Fibonacci numbers treated in §3. Let r, s, a, b9 a, and 3 be real num-
bers, where a and 3 are given by (15). If FQ = a, F1 = &, ̂ n + 2

 = p^z+i + s^n» 
for n = 0, 1, 2, ..., then 

Fn - ̂ f^T a" + ̂ f r 6"' f0rW = °» *• 2 <22> 
Here, of course, we assume that r2 + 4s > 0 so a ^ 3 and both a and 3 are real 
numbers. For brevity, we omit the discussion of the special cases (a) a = 3, 
(b) a = 0 > 3s and (c) a > 3 = 0. In these last two cases, equation (16) gives 
s = 0. Hence, Fn+1 = rFn and the sequence {Fn} is a geometric sequence. 

REFERENCES 

1. Paul Bachman. Niedere Zahlentheorie. New York: Chelsea, 1968. 
2. M. W. Bunder. "More Fibonacci Functions." The Fibonacci Quarterly 16 

(1978):97-98. 
3. Francis D. Parker. "A Fibonacci Function." The Fibonacci Quarterly 6 

(1968):l-2. 
4. W. R. Spickermane "A Note on Fibonacci Functions." The Fibonacci Quarterly 

8 (1970):397-401. 
5. N. N. Vorob'ev. Fibonacci Numbers. New York: Blaisdell, 1961. 
6. Charles R. Wall. Selected Topics in Elementary Number Theory* Columbia: 

University of South Carolina Press, 1971. 

1986] 149 


