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1. INTRODUCTION 

The Simson formula for the Fibonacci numbers Fn defined by 

Fn + 2 = Fn + 1 + Fn' *"„ = 0 ' Fl = 1 . ( I ' D 
i s 

Fn+lFn-l ~F« = ( - 1 ) " ' d-2) 

which may be expressed in de te rminan t form as 

= ( - 1 ) * . ( 1 . 2 ) ' 

For the numbers Wn defined by the generalized second-order recurrence rela-
tion 

Wn + 2 = PWn + l ~ ?Wn> Wo = a> Wi = h * (K3) 

a Simson formula was obtained in [3]. Ifs in this generalized Simson formula, 
we write wn = x9 Wn+1 = y9 then various conies—ellipses and rectangular hyper-
bolas—in the Euclidean plane arise as loci of the points (x9 y) . An analysis 
of these conies was made in [4] for the special cases of (1.3) which give the 
Fibonacci, Lucas, Pell, Fermat, and Chebyshev sequences of numbers (and also 
for the degenerate case when the conic breaks up). 

Further developments of this theme were made by Bergum [1]* 
It is a natural desire to want to extend the geometrical aspect of Simsonfs 

formula (1.2) to higher dimensions. This was partly achieved in [4] for a 
third-order recurrence relation where a suitable analogue to Simsonfs formula 
(Waddill and Sacks [5]) was used to produce a corresponding cubic surface in 
three-dimensional Euclidean space. However, as this analogue had not been ex-
tended to higher-order recurrences, it was not possible to proceed to higher 
geometrical dimensions. 

What was required was a technique, an algorithm, for determining an analogue 
to SimsonTs formula for recurrence relations of arbitrary order r, 

Happily, such a method was already in existence (Hoggatt and Bicknell [2]). 
After a brief, but necessary, recapitulation in the next part of this paper 

of the work done in [4] on the situation in three dimensions, we will proceed 
to employ the Hoggatt-Bicknell results [2] exclusively in the further develop-
ment of our theme. 

Before doing this, however, we introduce some definitions and notation. 
In r-dimensional Euclidean space (r > 2), a locus of points whose coordi-

nates satisfy an equation of degree m will be called a hypersurface of order m 
with dimension r - 1. It may be represented by the symbol Lr_le 

When the equation is linear (jn = 1), L^_ x is the symbol for a hyperplane 
in r dimensions, i.e., a "flat" space of maximum dimension in the containing 
space. 
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2. A CUBIC SURFACE IN THREE DIMENSIONS 

Consider the third-order recurrence analogue of (1.1) for the number se-
quence {Pn} defined by 

P = P + P + P (2.1) 
n + 3 n + 2 ^ n+l T cn \^-±J 

with initial conditions (Waddill and Sacks [5]) 

P0 = 0, P1 = 1, P2 = 1. (2.2) 

The first few numbers in this sequence are: 

P P P P P P P P P P P 

1 1 2 4 7 13 24 44 81 149 274 ... (2.3) 

Waddill and Sacks [5] obtained a Simson formula analogue for {Pn} which, 
not unexpectedly, was of the third degree. 

Putting Pn = x, Pn + 1 = y9 Pn + 2
 = z i n their formula, the author [4] derived 

the cubic equation 

x3 + 2y3 + z3 + 2x2y + 2xy2 - 2yz2 + x2z - xz2 - 2xyz = 1. (2.4) 

Interpreting x9 y, and z as Cartesian coordinates, we see that the points 
(x9y,z) lie on the cubic surface (2.4) in Euclidean space of three dimensions. 
For example, the point (1,1,2) in (2.3) lies on this L3

2 (2.4), as may be easily 
verified. 

Sections of the cubic surface (2.4) by the coordinate planes L\ are the 
ic curves L\: 

(x = 0: 
\y = 0: 
\z = 0: 

2y3 + 
x3 + 
x3 + 

z3 - 2yz2 = 1 
z3 + x2z - xz2 = 1 

2z/3 + 2x2y + 2 r a 2 = 1 
(2.5) 

lx2y + 2xy2 = 1. 

A close study of these L1 (2.5) might give us some insight into the nature 
and appearance of the L3

2 (2.4), but no detailed investigation is undertaken 
here. 

It must be clearly understood that the locus (2.4) and its other-dimensional 
analogues contain only the infinitude of points for which they are defined, 
i.e., within the context of this article these loci are not continuous. For 
instance, the point with coordinates (0, 2"1 , 0) lies on the L2 since (0, 
2"1/3, 0) satisfies equation (2.4), yet the triplet 0, 2"1/3,0 does not belong 
to the infinite set of numbers of the sequence {Pn}. Despite the lacunary na-
ture of our geometrical loci, it is nevertheless sometimes worthwhile consider-
ing them as continuous entities [as for the sectional loci (2.5), for example]. 

In addition to the sequence (2.3) and the corresponding Simson formula ana-
logue, Waddill and Sacks [5] discussed a closely related sequence for which the 
author [4] obtained a cubic equation almost identical to (2.4). However, this 
sequence is irrelevant to our purposes here and no further reference will be 
made to it. The true Fibonacci-type pattern which generalizes (1.1) and (1.2) r 

is that given in (2.3), as we shall see. 
Equation (2.4) of the cubic surface in three dimensions L\ may also be es-

tablished by a different approach using the "interesting determinant identity" 
of Hoggatt and Bicknell [2]. This identity, which has the structural appear-
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ance of an extension of (1.2) ', and which relates to the sequence (2.3) with 
P-i = 0 is, in our notation, 

Pn 

Pn 
P„ = -1. (2.6) 

'n- 1 "n-2l 

Let us now write Pn = x, Pn+1 - y, Pn+2 ~ z> anc* observe from (2.1) that 

"n+2 
2P« 

~n+l Pn = z - x - y 

y-n-2 ~ ^ n + 1 ^n+2 ~ ^ ~ Z 

Expanding (2.6) with the aid of (2.7), we derive 

x3 + 2y3 + z3 + 2x2y + 2xy2 - 2yz2 + x2z - xz 2xyz = 1, 

(2.7) 

(2.8) 

which is identical to equation (2.4) 
Thus, the same cubic surface L\ in three-dimensional Euclidean space is 

produced both from the Waddill and Sacks [5] cubic equation and from the Hoggatt 
and Bicknell [2] determinant identity. 

3. HYPER-SPACES IN FOUR DIMENSIONS 

Next, introduce a fourth-order recurrence relation for numbers Qn (in our 
notation): 

with initial conditions 

n + 3
 + % + 2 + «n + l + (3.1) 

0, Qx = 1, i , e, o, 
Then the sequence {Qn} looks like this: 

M>X H,2 H,3 M,^ 

1 1 2 4 
"5 ^6 ^7 ^8 ^9 ^10 

5 15 29 56 108 208 

= 0). (3.2) 

(3.3) 

Following the method by which (2.6) was established, Hoggatt and Bicknell 
[2] exhibited the neat determinantal identity 

*n+3 

*n + 2 

? 

0 

*n + 2 

3n 

Jn 
) Jn-1 
1 
Jn-2 

Write Qn = x9 
may deduce that 

w-1 

®n+i = y 

* n 

d *n-2 
d 
* « - 3 

S 9 

(-1)" 

*n + 3 

(3.4) 

t . Observe that, from (3.1), we 

3n-2 
*w- 3 

Wn+3 " 

2^n + 2 
2«n + l 

src + 2 
^rc + 3 
^ n + 2 

Bn + i ^ 
2z - t 

x - y 
(3.5) 

22/ 

1986] 223 



HYPERSURFACES ASSOCIATED WITH SIMSON FORMULA ANALOGUES 

Expand (3.4) along the first row. Then, the locus of the point (x,y,z9t) 
in four-dimensional Euclidean space is the quartic hypersurface L^ (in fact, 
two such loci depending on the evenness or oddness of n): 

x[x{y(t- x-y- z) - x2} - y{y(2z -t)-x(t-x-y-z)} 
+ z{x(2z- t) - (t- x- y-z)2}} 

-y[(t- x- y- z){y(t- x- y- z) - x2} - y{y(2y - z) - x(2z- t)} 
+ z{x(2y- z) - (2z- t)(t- x- y- z)}] 

+z[(t- x- y - z){y(2z- y) - x(t - x- y - z)} - x{y(2y - z) - x(2z- t)} 
+ z{(2y- z)(t-x-y- z) - (2z- t)2}] 

-t[(t- x-y- z){x(2z- t) - (t- x- y- z)2} 
- x{x(2y - z) - (2z - t) (t - x- y - z)} 

= ( _ ! ) ^ . + yi(2y- z)(t-x-y- z)- (2z- t)2}] 

(3.6) 

Discretion seems the better part of valor here, so we will leave the equa-
tions in this form which is useful for deducing the sectional loci in (3.7). 
However, the interested reader may care to expand the expressions in (3.6) still 
further. It certainly bears out the author's trepidation [4] about the cum-
bersome algebraic manipulation involved in the fourth-order recurrence case. 

Before expanding along the first row, one might secure a slightly simpler 
form of the determinant by adding to the fourth row the sum of the first three 
rows. But, in all probability, perhaps no great economy of effort in exhibit-
ing (3.6) is thereby effected. 

Planar sections (quartic curves L\) of the hypersurface (3.6) by pairs of 
three-dimenaional coordinate hyperplanes (L\) are readily obtainable, namely: 

0, y = 0 

0, z = 0 

0, t = 0 

y = 0, z = 0 

y = 0, t = 0 

z = 0, t = 0 

-3yk + 2z3t + 2z2t2 

yh + 3yH 
yh - 3y3z - ly2z2 

~-xh - 3x3y - kx2y2 

3zt6 + 

2yt3 + 

5yz3 3 ^ = 

3xt3 + th 

xz 
2xy3 

3zH 

y" 

- i ) n 

- i ) n 

-D* 
-Dn 

-iy 

-i) n . 

(3.7) 

Superficially, there does not appear to be anything memorable about these 
quartic plane curves. 

One must be struck, in comparing (1.2)', (2.6), and (3.4), which relate to 
p = 2, 3, and 4, respectively, by the fact that when v is even the value (±1) 
of the determinant depends on the evenness or oddness of n, whereas in the case 
of v odd (= 3) this is not so, the value being -1 always. 

These variations raise obvious questions. Is the incipient result for r = 
2 , 4 a true pattern for v even generally? Might we reasonably expect the de-
terminantal value for r = 5 to be +1, and will the incipient pattern for r odd 
prove to be valid for v odd generally? 

Answering these questions constitutes an interesting part of the overall 
problem. 

k. HYPERSURFACES IN HIGHER DIMENSIONS 

Extending the pattern of the ideas used for lower-order recurrence rela-
tions, Hoggatt and Bicknell [2] defined the sequence {Rn} of order v by 
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Rn+r Rn+r-i+Rn + v-2 + Ry (4.1) 

with initial conditions 

and 
Rrs = 0, R, 

R-(r-2) R-(r-3) R_± = 0. 

(4.2) 

(4.3) 

For these numbers Rn generated by the p-order recurrence relation (4.1), 
they established the determinantal identity 

1 n + r - 1 

ln+ 1 

Rn+ r-

^n+r-2 ^n+r-3 

n- 1 

Rn+ 1 
Ry, R„ 

Rn-r+3 Rn-r+2\ 
nn-r+ 2 n-r+1 

(-1)' 
(r- l)n+ [(r- l)/2] 

(4.4) 

which specializes to the determinantal results (1.2)', (2.6), and (3.4) already 
given for small values of r, namely, v - 29 3, and 4, respectively. In (4,4), 
the notation [(r - l)/2] refers to the greatest integer function. 

[It should be noted that a small typographical aberration occurs in the 
power of (-1) on the right-hand side of (4.4) as given in [2].] 

Putting Rn = x19 Rn+1 = X2> Rn + 2 = ^ 3 ' •••» Rn+r-l= xr i n (4.4), a n d sub-
stituting by means of (4.1)-(4.3) for elements below the reverse diagonal, we 
could theoretically obtain the locus of points (x19x29 ^3> ...s xr) in r-dimen-
sional Euclidean space satisfying equation (4.4). 

By analogy with (2.8) and (3.6), this locus is a Lr_^9 a hypersurface 
(dimension v - 1) of order P. Sections by sets of r - 2 coordinate hyperplanes 
("flat" hyperspaces L^_, of dimension r - 1) from the total set 

\vG-7 \J , iX<o 0 , xq 0, 0} 

of such hyperplanes give the planar curves L1 of order v in two dimensions cor-
responding to the conies (L\) 9 cubics (L\), and quartics (L\) in the lower-
dimensional cases. 

For example, in six-dimensional Euclidean space (r - 6 ) , the section of the 
sextic hypersurface L5 by the four coordinate hyperplanes x3 = 0, xh = 0, x5 = 0s 

x$ = 0 is a plane sextic curve L1. 
A representative instance of (4.4) is, for r 5, n = 7 (say), 

464 
236 
120 
61 
31 

236 
120 
61 
31 
16 

120 
61 
31 
16 
8 

61 
31 
16 
8 
4 

31 
16 
8 
4 
2 

= +1 (on calculation) 

= (-1) 28+2 (-1)30 in accord with (4*4). 

For various values of r and n, the determinantal values in (4.4), i.e., +1 
or -1, may be summarized in the following table: 
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Table 1: Determinantal Values in (4.4) 

Odd 
1,3,5,7,... 

Even 
2,4,6,... 

Even 

2,6,10,... 

-1 

+1 

4,8,12,... 

+1 

-1 

Odd 

3,7,11,... 

-1 

5,9,13,... 

+1 

Or, expressed symbolically: If 

r = kk + 2, 4/c + 3, kk + 4, 4k + 5 (k > 0), 
then 

(_1)(r-l)n+[(r-l)/2]=(_1)^ _^ (.^+1, ^ 

respectively. 

Thus, for each odd value of r, there is just one hypersurface irrespective 
or the value of n, while, for each even value of r, there are two "companion" 
hypersurfaces which depend on the evenness or oddness of n. 

Now, in [4] it was stated that, when r = 2, a hyperbola for which n is odd 
(even) may be transformed into its companion hyperbola occurring when n is even 
(odd) by a reflection in the line y = x followed by a reflection in the 2/-axis 
(x-axis). 

Remembering that in two dimensions (r = 2), a line (a L±) is a hyperplane, 
one may speculate whether a similar, though more complicated, system of geo-
metrical reflections in hiĝ her even-dimensional spaces (r = 4,6,...) will pro-
duce a transformation of one hypersurface into another. Further, one wonders 
whether any self-transformation of a hypersurface is possible, for an odd value 
of r. 

With these reflections, we leave the geometry. 
A concluding comment on nomenclature is appropriate. Numbers, and their 

polynomial extensions, defined in (2.l)-(2.2), (3.l)-(3.2), and (4.1)-(4.3) are 
sometimes referred to in the literature as Tribonacci, Quadranacci, and p-bonacci 
respectively. While these adjectives are suggestive and useful, they do not 
appeal to the author and consequently have not been utilized in this article. 
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