A CONGRUENCE RELATION FOR CERTAIN RECURSIVE SEQUENCES

H. T. FREITAG

B40 Friendship Manor, Roanoke, VA 24012 and

G. M. PHILLIPS University of St. Andrews, St. Andrews, Scotland (Submitted December 1984)

Recently, the first author [1] showed that

$$F_{n+5} \equiv F_n + F_{n-5} \pmod{10}$$

(1)

where F_n is the n^{th} Fibonacci number, defined by $F_{n+1} = F_n + F_{n-1}$, $n \ge 2$, with $F_1 = F_2 = 1$. It was also shown [1] that this result generalizes to a sequence $\{S_n\}_1^{\infty}$ defined by

$$S_{n+1} = S_n + S_{n-1}, n \ge 2,$$

with $S_1 = c$, $S_2 = d$, where c and d are nonnegative integers. The nonnegative restriction was imposed in order to guarantee that each member of the sequence is a positive number. However, the result is, in fact, valid for any integers c and d.

The purpose of this paper is to generalize (1) further. We will see that the role played by the integer 5 in (1) can, in the generalization, be played by any prime $p \ge 5$.

We begin by introducing a more general sequence $\{T_n\}_{-\infty}^{\infty}$ defined by

$$T_{n+1} = aT_n - bT_{n-1}, \text{ with } T_1 = c, \ T_2 = d,$$
(2)

where a, b, c, and d are integers with the restriction $b \neq 0$ (and exclusion of the trivial case where c = d = 0). We write $\{\alpha, \beta\}$ to denote the set of solutions of the quadratic equation $x^2 - \alpha x + b = 0$. Two particular choices of c and d in (2) give rise to sequences $\{T_n\}$ of special interest to us. We denote these by $\{U_n\}_{-\infty}^{\infty}$ and $\{V_n\}_{-\infty}^{\infty}$, where

$$U_n = (\alpha^n - \beta^n) / (\alpha - \beta) \tag{3}$$

and

$$V_n = \alpha^n + \beta^n. \tag{4}$$

For $\{U_n\}$, c = 1 and d = a while, for $\{V_n\}$, c = a and $d = a^2 - 2b$. These sequences have been studied by Horadam [4]. [If $\alpha = \beta$, we replace (3) and (4) by the limiting forms $U_n = n\alpha^{n-1}$ and $V_n = 2\alpha^n$, respectively. Note that, in this case, $b = a^2/4$ and $\alpha = a/2$.] For the special case of (2) where $\alpha = -b = 1$, the sequences $\{U_n\}$ and $\{V_n\}$ are, respectively, the Fibonacci and Lucas numbers for which (3) and (4) are the well-known Binet forms. We will write $\{L_n\}$ to denote the Lucas sequence.

Using $\alpha\beta$ = *b*, we readily deduce from (3) and (4) that

 $U_{-n} = -b^{-n}U_n \tag{5}$ $V_{-n} = b^{-n}V_n.$

and

332

[Nov.

We will require (5) later. We also need two lemmas connecting the sequences $\{U_n\}$ and $\{V_n\}$. The Fibonacci-Lucas forms of these (corresponding to $\alpha = -b = 1$) are given in Hoggatt [3].

Lemma 1: For all integers k,

$$U_{k+1} - bU_{k-1} = V_k. (6)$$

Proof: This is proved by induction or directly by using the generalized Binet forms (3) and (4).

Lemma 2: For all integers n and k,

$$U_{n+k} + b^{k} U_{n-k} = U_{n} V_{k}.$$
⁽⁷⁾

Proof: The proof may again be completed either by induction or by direct verification using (3) and (4). For the induction proof, we begin by verifying (7) for n = 0 and 1, with the aid of (5).

We generalize this last result to the sequence $\{T_n\}$ defined by (2).

Lemma 3: For all integers n and k,

$$T_{n+k} + b^{k} T_{n-k} = T_{n} V_{k}.$$
(8)

Proof: We show by induction that

 $T_{n} = dU_{n-1} - bcU_{n-2}, (9)$

and hence verify (8) directly from (7).

The results which we have obtained thus far are, in fact, valid when a, b, c, and d in (2) are real. However, for the divisibility results which follow, we require integer sequences; hence, we require a, b, c, and d to be integers. Also, in view of (5), we need to restrict $\{T_n\}$ to nonnegative n unless |b| = 1. We now prove our first divisibility result.

Lemma 4: For any prime p,

 $V_p \equiv a \pmod{p}$.

Proof: We need to treat the case p = 2 separately.

Since $V_2 = a^2 - 2b$,

 $V_2 - a = a(a - 1) - 2b \equiv 0 \pmod{2}$

for any choice of integers a and b. If p is an odd prime,

$$\alpha^{p} = (\alpha + \beta)^{p} = \sum_{r=0}^{p} {p \choose r} \alpha^{p-r} \beta^{r}.$$

From $\alpha\beta = b$, we obtain

$$\alpha^{p-r}\beta^r + \alpha^r\beta^{p-r} = b^r(\alpha^{p-2r} + \beta^{p-2r}).$$

1986]

333

(10)

and thus

$$\alpha^{p} = V_{p} + \sum_{r=1}^{(p-1)/2} {p \choose r} b^{r} V_{p-2r}.$$

In the latter summation, we note that

$$\binom{p}{r} \equiv 0 \pmod{p}$$

for each r and the proof is completed by applying Fermat's theorem

 $a^p \equiv a \pmod{p}$.

For the Fibonacci-Lucas case (where $\alpha = -b = 1$), Lemma 4 yields

 $L_p \equiv 1 \pmod{p}$

for any prime p. This special case, although not quoted explicitly, is easily deduced from congruence results for the Fibonacci numbers given in Hardy and Wright [2].

We now state the first of our main results.

Theorem 1: For all $n \ge p$ and all primes p,

$$T_{n+p} \equiv aT_n - bT_{n-p} \pmod{p}. \tag{11}$$

Proof: The proof follows from Lemmas 3 and 4 and Fermat's theorem. If |b| = 1, then (11) holds for all values of n.

Observe how the congruence relation (11) mimics the pattern of the recurrence relation (2).

To strengthen Theorem 1 for primes greater than 3, we first require:

Lemma 5: If $k \not\equiv 0 \pmod{3}$, then for all choices of a and b,

 $V_{k} \equiv \alpha \pmod{2}. \tag{12}$

Proof: In verifying (12) for all possible choices of a and b, it suffices to consider $\{a, b\} = \{0, 1\}$. If a is even and b is even or odd, V_k is even for all k and (12) holds. If a is odd and b is even, V_k is odd for all k and again (12) holds. Finally, if both a and b are odd, then V_k is even if and only if $k \equiv 0 \pmod{3}$, and the lemma is established.

Theorem 2: For all $n \ge p$, where p is any prime greater than 3,

$$T_{n+p} \equiv aT_n - bT_{n-p} \pmod{2p}. \tag{13}$$

[We note that (1) is the special case of (13) obtained by taking p = 5 and a = -b = c = d = 1.]

Proof: From the result of Theorem 1, it remains only to show that

$$T_{n+p} - \alpha T_n + bT_{n-p} \equiv 0 \pmod{2}.$$
⁽¹⁴⁾

[Nov.

334

Using Lemma 3, the left side of (14) may be expressed as

 $(V_p - \alpha)T_n + (b - b^p)T_{n-p}.$

Observe that $b - b^p \equiv 0 \pmod{2}$ and Lemma 5 shows that $V_p - \alpha \equiv 0 \pmod{2}$ for p any prime greater than 3, which completes the proof.

REFERENCES

- 1. H. T. Freitag. "A Property of Unit Digits of Fibonacci Numbers." Proceedings of the First International Conference on Fibonacci Numbers and Their Applications, University of Patras, Patras, Greece, August 27-31, 1984.
- 2. G. H. Hardy & E. M. Wright. An Introduction to the Theory of numbers. 3rd ed. Oxford: Oxford University Press, 1954.
- 3. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969.
- 4. A. F. Horadam. "Generating Identities for Generalized Fibonacci and Lucas Triples." *The Fibonacci Quarterly* 15, no. 4 (1977):289-292.
