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1 . INTRODUCTION 

By an e x p o n e n t i a l d i v i s o r (or e - d i v i s o r ) of a p o s i t i v e i n t e g e r N > 1 wi th 
c a n o n i c a l form 

N-PI1 ••• ?;-, 
we mean a divisor d of N of the form 

d = p^1 ... ph/ , bi\ai5 i = 1, ..., r. 

The sum of such divisors of N is. denoted by o '(N) , and the number of such 
divisors by T^e\N) . By conventions 1 is an exponential divisor of itself, so 
that a(e)(l) = 1. The functions j(eXN) and o^eK^) were introduced in [1] and 
have been studied in [1] and [2], 

An integer N is said to be e-perfect whenever o^e\N) = 2N9 and g-multiper-
fect when o^e\N) = kN for an integer k > 2. In [1] and [2], several examples 
of e-perfect numbers are given. It is also proved in [2] that all g-perfect 
and all g-multiperfect numbers are even. 

Several unsolved problems are listed in [2], and one of them is whether or 
not there exists an e-multiperfect number. In this paper, we show that if such 
a number exists, it must indeed be very, very large. 

2. NOTATION AND SOME LEMMAS 

In all that follows, the positive integer N is assumed to be an g-multi-
perfect number, so that 

0(e)(N) = kN for some integer k > 2. (2.1) 

Note that if n is a square-free integer, then cre'(n) = n, so that if 
(n, N) = 1, then Nn is also e-multiperfect. Hence, we assume (as we may) in 
the future that N is powerful. Also note here that we have used the fact that 
O^ is a multiplicative function. 

Write 

N = 2h(q°i ... ̂ K P i 1 ... Pt
bt), (2-2) 

where the pfs and ^!s are distinct primes, and each a^ is a non-square integer 
> 2, and each bj is a square integer > 4. It follows then that each o^iq?*) 
is even and each o^e^(p. j) Is odd. 

Let k = 2WM, where M is odd and co > 0. 
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Lemma 2*3: N Is even, i.e., h > 2. 

This is a consequence of Theorem 2.2 of [2], 

Lemma 2.k: s < a) + h. 

Proof: The relation a(e)(N) = kN gives 

a(e)(2h) na(e)(?ao 
i = l ^ 

na(e)(pM 
J = 1 J . 

2a + nM(q^ ... ?£•)(?* *>i 

and 
Since the only even factors on the left side are o^iq**1), .. . 9 
since 2|a(e)(2/z)5 the result follows. 

•• p r } -

0(e)(qa
s°), 

< 

In what follows, the letter p represents a prime. 

Lemma 2.5: 

O (l +-T + -T) < d.27885) (l --T J ••• (l - \ V 

Remark: This is a stronger form of Lemma 2.1 of [2], where a similar result is 
proved with the multiplicative constant on the right being 27/16~ 1.6875. For 
our present purpose, we need the above stronger result. 

Proof of Lemma 2.5: 

KJ_ g(2)g(3) A _ _ L \ ... d _ J_\ 

on utilizing the result that 

1 1 1 
1 _ _ < 1, J = 1, .... S. 

L <^JL <7JJ 
Using 

£(2) < 1.64494, c(3) < 1.20206, and £(4) < 1.08232 

([3], p. 811), we obtain the proof of the lemma. 
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Lemma 2.6: 

1.27885 <(-?^)[('^)(.-^-(.^)(.-^ 
70l-2)/2 where 1 + 2Kn Z)/z is to be taken as 1 + ~ for h = 29 3 

Proof: 

g(g>(ff) g(e)(2^) n — a(e)(<7$') 

n 
We note first that, for any prime p5 we have 

^ = 1 + — s m = zs 3, 
pm p2 p 

A l so s fo r m ^ 2S 

a ( e ) (p m ) -77? , T~m/2 , -_ 777 / 3 (PW + P
W / Z + pm'3 + . . ' • + p ) / P " 

< 1 + — — + " + + 
777/2 777/2+1 777/2+2 

1 + 
^ ^ - ^ ( P " 1) 

Thus, 

a ( g ) (2») 1 o{e\2h) , 1 x l < x + _ ± fo r h > 4 ; - — ^ - ^ < 1 + •$, h = 29 3 , 

and 

Next:, 

a(fi)(<7?') i 

n 
i- 1 

a(e>(pa<) 

p ; 2>< 

V) < n—-1- = n (i +^ + rr 

< n (i + -7 + A) 
p*2, , , , . . . , ?8\ P 2 P V 

< (1.27885)11 

on us ing Lemma 2*5* The r e s u l t (2 .6 ) now f o l l o w s , 
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3. MAIN RESULTS 

Given k ^ 3, we shall estimate In and s as functions of k and show that 

lim In = lim s = °°. (3.1) 
k + oo k-*™ 

These follow from the results oo < log k/log 2 and 

h > s - co > [(1 - log(32/27)/log 2)log Zc 

- log((1.27885)(1.5))]/log(32.27). (3.2) 

To obtain (3.2), we utilize Lemmas 2.4 and 2.6. Thus, 

k 
< 1.27885 - ( 1 + l ) A ( 1 + £ ) ( 1 _ ^ ) - (3-3> 

If we take logarithms of both sides and use the estimate that, for all i, 

then, after carrying out routine calculations, we get (3.2) from (3.3). 
Actually, the estimate for In in (3.2) can be vastly improved as shown below. 

Let H0 = HQ(k)be the smallest value of In for which N, given by (2.2), is a 
solution of (2.1). Then we shall show that H0 increases exponentially with k. 
In fact, there is a function E(k) such that HQ(k) ^ H(k) and log log H ~ log k 
as k -*- °°. 

Let Q1 = 3, Q2 - 5, . . . be the sequence of odd primes. From (3.2), we have 

k 
1.27885 x , 

Now let H be the smallest integer satisfying (3.5). 

k H - 1 + t 

< ( i + — L - ) f l n W ( i + 7 r V i - J r V 

fe 
.27885 

fl + i 

It is clear that HQ(k) > H(k). 

Theorem 3.7: log log H ~ log k (k •+ °°). 

Proof: Taking logarithms and letting k •> °°  and noting that 

log(l + 2-(H"2)/2) < log(l + | ) = 0(1) ( # + - ) , 

and similarly for log(l + 2~ ( f f " 3 ) / 2 ), and using the result 

(3.6) 

Eiogfi - -V) = o(i), t -> °°, 

we get 
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+ OJ- 1 / 1 \ 

£ logh + — J + o(i) < log k + o(i; 

*+<* t 1 \ ( 3 ' 8 ) 

< L l o g ( l + 7 T ) + 0(1) . 
Note that as k ->• °°, # -> °°, and 

£ logfl + -~) ~ log log # (H -> oo), 

Thus, (3.8) gives 

log log(# + 03) ~ log & (A: -> ° °). 

Since a) = 0 (log &) , this gives 

log log # ~ log fe (k •*• ° °). (3.9) 

Explicit Lower Bounds for 21/ 

We shall now give some explicit lower bounds for N(k)5 the smallest value 
of N for given values of k that satisfies (2.1). 

First, we note the explicit values of H = H(k) for certain small values of 
k. 

Lemma 3-10: 

(i) H(3) = 4 (iv) ff(6) = 426 

(ii) #(4) = 41 (v) H(7) = 1382 

(ii i) H(5) = 135 (vi) H(8) = 4553 

Proof: We recall the definition of H and utilize its characterization given by 
(3.6). Then a computer calculation gives the above results. 

Lemma 3-11- Let P(x) denote the product of all the primes not exceeding x. 
Then 

(i) log P(x) > .84x for x > 101, 

(ii) log P(x) > .98a; for x > 7481. 

This follows from Theorem 10 of the estimates given by Rosser and Schoen-
feld [4]. 

Of course, the Prime Number Theorem gives the result that log P(x) ~ x. 

Theorem 3-12: 

N(3) > 2 • 107 (3.13) 

tf(4) > 108 5 (3.14) 

N(5) > 10 3 2 0 (3.15) 

71/(6) > 10 1 2 1 0 ; also N(k) > 1 0 1 2 1 0 for all even k for which (3.16) 

03 = b)(k) = 1 . 
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N(k) > 1052 7 0 for all odd k > 7. (3.17) 

N(k) > 101988lf for all even k > 8, for which u) = o)(fc) = 3. (3.18) 

Proof: We shall use the results of Lemmas 3.10 and 3-. 11. We shall illustrate 
the proof by considering only a few cases. 

Let 

G(H, u) = (l + — 1 — ) n (l + -M(l - ±). (3.19) 
\ 2(H~2)/2/ i = ±\ Qi/\ Q\l 

(') ^ = 3: Since 5(3) = 4, by Lemma 2.5 and (3.6), we should have 

£(3, u) > 3/1.27885. 

A computer run shows that the smallest value of u for which this inequality 
holds is u - 4. Hence, s ^ 4 and 

tf(3) > 2h U Q2 = 2k • 32 • 52 • 72 • ll2 = 21344400 > 2 • 107. 
i = 1 

(si) k = 7: Since 5(7) = 1382, (5 - 2)/2 = 691. We should then have 

^(7, u) > 7/1.27885,. 

A computer run shows that the smallest u that satisfies this is u = 1382. Thus, 

N(7) > 2 1 3 8 2 l O % 2 > 10527 0 

i = 1 'z-

on using Lemma 3.11. 

(iii) k odd > 1% Then 5(7<) satisfies 

fc/(l.27885) < (l + - ) n (l +7™Vl " -TV' 

Since 7/1.27885 < k/1.27885, we have H(k) > 5(7) = 1382. Hence, the value of u 
that satisfies 

G(k9 u) > Zc/1.27885 

is >1382, and N(k) > 1052 7 0 for all odd k > 7. 

(iv) k *= 8: We have OJ = 3 and 5 = 5(8) = 4553. Thus, (5 - 2)/2 = 2276.5 
and 

A computer run shows that the smallest value of u for which 

£(8, u) > 8/1.27885 

is u = 4556. Hence, s > 4556 and 
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N(8) > 2 4 5 5 3 n Q2 > 1 0 1 9 8 8 ^ 
i = l 

on using Lemma 3*11 and a computer calculation. 

(v) k even and > 8 and co = U)(k) = 3; We have 

8 k I 1 \H(k) + w * j \ / 1 \ 

TT27885 < T^7885< V +
 2 (H W- 2)/J ^ ^ + ̂ A 1 " £| J 

\ 2 (H^)» -2 ) /2 / / A \ QJ\ QIJ 

From thiss it is clear that E(k) > H(8) for all even & for which a) = CD(&) = 3. 

Remark 3»20: Though we are unable to prove this9 it is very likely that H(k) 
increases monotonically with k for all k ̂  3* , The numerical evidence supports 
this; therefore, we make the following conjectures. 

Conjecture 3*21: H(k) and HQ(k) are monotonic functions of k for k ̂  3. 

Conjecture 3*22: There are no e-multiperferfect numbers. 
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