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I. INTRODUCTION 

A number of different families of graphs have recently been proposed as 
possible interconnection models for computer networks. A tree is the cheapest 
interconnection, but has unacceptably poor connectivity properties. On the 
other hand9 the complete graphs Kn9 although most reliable and best connected, 
is prohibitively expensive (too many edges). A number of other graph families 
that lie between these two extremes have been proposed and analyzed for rele-
vant properties such as path lengths, connectivities, cost, reliability, poten-
tial congestions, throughput, etc. The search for "good11 interconnection 
graphs for various situations continues. This paper is an outcome of our 
attempt to find a class of graphs which satisfy certain desired properties. 

In Section II, we derive a family of adjacency matrices from Rencontres 
numbers, and call the corresponding graphs Rencontres graphs, which are con-
nected, undirected, bipartite graphs. In Section III, the connectivity of Ren-
contres graphs is explored. In that section, we also prove that the complete 
bipartite graph Ktit is a subgraph of the Rencontres graph of 2t vertices. An 
expression for the number of edges in a Rencontres graph in terms of the num-
ber of vertices is developed in Section IV. In Section V, it is shown that all 
Rencontres matrices of order other than 2 are singular. 

We have used standard graph theoretic terms, for which readers may refer 
to [3] or [4]. All logarithms are with respect to base 2. 

II. BASIC CONCEPTS AND DEFINITIONS 

A classical combinatorial problem, known generally by its French name, "le 
probleme des rencontres," is to find the number of permutations of n distinct 
elements (say, 1, 2, ..., n) such that no element is in its own position, or 
element k is not in the kth position, k = 1, 2, ..., n. It is also known as 
the derangement problem. Its solution by Montmort (1713) effectively uses the 
principle of inclusion and exclusion [1]. More generally, the derangement 
problem enumerates permutations of n distinct elements according to the number 
of elements in "their own positions." 

Let DHik be the number of permutations of n elements with exactly k of them 
not displaced. In particular, DUi0 is the number of permutations of n elements 
with all of them displaced, and Dntn is the number of permutations of n elements 
with none of them displaced. It has been shown in [1] that 

Dn,k = \]JDn'k'0' 

The numbers #ns£ for given n and k, 0 ̂  k K ns are called Rencontres numbers. 

*This work was supported by the United States Army Research Office under 
grant DAAG29-82-K-0107. 
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For n = 05 1, ..., 10 and k = 0S 1, . .., 10, the numbers Dnfkare given in Table 
1, henceforth referred to as the Rencontres table. 
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Table 1. Rencontres Numbers Dn^ 

1 2 3 4 5 
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14832 
133497 
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0 
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20 
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924 
7420 

66744 
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0 
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22260 

1 
0 
15 
70 
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1 
0 
21 
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1134 

6 7 8 9 10 

1 
0 
28 
168 

1 
0 
36 

1334961 1334960 667485 222480 55650 11088 1890 240 45 0 

The following results can be derived easily., 

Dn,n= (Jo,, 1 for all n > 0 

£ns0= nDn_U0+ (-l)n for all n > 1 

D , = 0 for all n > 0 
n + 1 , n 

nl '±o(l)Dn_kw0for a l l n > 0 

*>n.k= Dn-i,k-i + (" I V»-*.o f ° r a11 n > l &nA l <k < n 

D- • = 0 if either or both i and j are negative integers. 

Let us define a few terms used in this paper. 

Definition 1: An n x n symmetric binary matrix is called the Rencontres matrix 
RM{n) of order n if its principal diagonal entries are all 0?s and its lower 
triangle (and therefore the upper also) consists of the first n- 1 rows of the 
Rencontres table modulo 2. Let rmis j denote the element in the itn row and the 
j t h column of the Rencontres matrix. 

Definition 2: The simple, undirected graph with n vertices corresponding to 
RM(n) as its adjacency matrix is called the Rencontres graph RG(n) of order n. 

The matrix RM(10) is shown below followed (in Figure 1) by the first eight 
Rencontres graphs. 

1387] 251 



RENCONTRES GRAPHS: A FAMILY OF BIPARTITE GRAPHS 

1 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

i 
(0 

i 
0 
1 
0 
1 
0 
1 
0 

U 

2 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

1 © 

1 « 

3 
0 
1 
0 
1 
0 
0 
0 
1 
0 
0 

4 
1 
0 
1 
0 
1 
0 
0 
0 
1 
0 

® 1 

5 
0 
1 
0 
1 
0 
1 
0 
1 
0 
0 

® 7 

•« 2 

6 
1 
0 
0 
0 
1 
0 
1 
0 
1 
0 

7 
0 
1 
0 
0 
0 
1 
0 
1 
0 
0 

8 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

9 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

10 
1 \ 
0 
0 
0 
0 
0 
0 
0 
1 
o ; 

RG(1) 

RG(2) 

RG(3) 

RG(4) 

RG{5) 

RG(6) 

L532 

RG(7) 

RG(8) 

Figure 1. Rencontres Graphs RG(ri) , 1 < n < 8 
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Definition 3: Let rtitj be the j t h element in the i t h row of the Rencontres 
table 5 where rows and their elements are numbered beginning with 0. 

Thus 5 by the definition of the Rencontres matrix, 

rm-itJ- = ^ i - 2 , j - i (mod 2) f o r i > j > 1 

= () _ l)r*i-j-i,o (mod 2) 
<i - 2\ 
VJ 

= (} I 1)rmi_j+l3l (mod 2 ) , 

Definitions 1-3 are similar to those in [5], in the context of Pascal graphs. 

Definition h: Let BS(M) denote the binary representation of a nonnegative in-
teger M; if q is the smallest integer such that 2q+1>M9 then q will be called 
the length of BS(M) . The pt h bit of BS(M) will be denoted as BSP(M), where the 
bits are counted from right to left and the rightmost bit is the 0t h bit* 

Definition 5- The B-sequenoe of a positive integer N is defined as the strict-
ly decreasing sequence B(N) = (p , p ? s ..., p„) of £ nonnegative integers such 
that 

N = L 2P*» 
i = l 

Note that the J9-sequence of any positive integer N gives the positions of l?s 
in the binary representation of N in decreasing order. Also, the S-sequence of 
zero is defined to be a null sequence. This definition is the same as in [6]. 

M S , CONNECTIVITY PROPERTIES OF THE RENCONTRES GRAPHS 

Lemma 1: Graph RG(n) is a subgraph of RG(n + 1) for all n > 1. 

Proof: This property is a direct consequence of the definition of the Rencon-
tres matrix. 

Theorem 1: All graphs RG(i), 1 < i < 79 are planar; all Rencontres graphs of 
higher order are nonplanar. 

Proof: Figure 1 clearly shows that all graphs RG(i) for 1 < i < 7 are planar. 
It is easy to see that Kuratowski?s second graph K3i3 is a subgraph of Rp(S). 
Thus3 by Lemma 19 all graphs of order 8 and higher are nonplanar. 

Theorem 2: (a) Vertex v± is adjacent to Vi+1 in the Rencontres graph for every 
i > 1. 

(b) Vertex v is adjacent only to all even-numbered vertices in the 
Rencontres graph. 

(c) Vertex i? is adjacent only to all odd-numbered vertices in the 
Rencontres graph. 

Proof: (a) By the definition of the Rencontres matrix, 

rmi3j- = rti_23J_1 (mod 2), i > j > 1. 

For all i > 1, rmi+lji = rti_ lsi _x (mod 2) = 1. Thuss vertex v^ is 
adjacent to V^+1 for all i ^ 1. 
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(b) Since vm2 L = Pt0, 0 (mod 2) = 1, so vertex v1 is adjacent to v2 

For £ > 3, rrrii^ l = ^ti_2i0 (mod 2) 

= (£ - 2)pti_3j0 + (-1)'"2 (mod 2) 

= (£ - 2)rmi_ltl (mod 2)+(~l)i_2 (mod 2) (mod 2). 

Now, if £ is evens 

(£ - 2) (mod 2) = 0 and (-l)i-2 = 1, 

so that vm^^Y = 1 for all even £ ̂  2. On the other hand, if £ is 
odd, 

(£ - 2) (mod 2) = 1 and (-l)i~2 = -1; 

also, since i - 1 is even, M^-i,! = 1- Hence, rmisl = 0 for all 
odd £ ̂  3. Thus, vertex v1 is adjacent to all even-numbered verti-
ces and to no others in the Rencontres graph. 

(c) Vertex v2 is obviously adjacent to v1. 

For £ > 3, rmii2
 = ( i )rmi-i,i (mod 2) 

= (£ - 2)rmi_l x (mod 2). 

Clearly, when £ is even, vm^ 2
 = 0. But, when £ is odd, vmi^2 ~ 1, 

since ^^i-i,} = 1 by Theorem 2(b). Therefore, vertex y is adjacent 
only to all odd-numbered vertices in the Rencontres graph. 

Corollary 1: Graph RG(n) , for all n ^ 2, is connected, and contains a Hamil-
tonian path [1, 2, 3, . .., n]. Moreover, for all even n ^ 4, graph RG(n) con-
tains a Hamiltonian circuit [1, 2, . .., n - 1, n, 1]. 

Corollary 2:* In graph RG(n) , degree (yx) = -r- , and degree (v2) = \ — \. 

Themrem 3- RG(n) is bipartite for n ^ 2. 

Proof: The proof consists of showing that neither two even-numbered nor two 
odd-numbered vertices in a Rencontres graph are adjacent. Let both £ and j be 
even integers, £ > j. Then* 

™iaj = (J I 5)*™w+i,i ( m ° d 2)' 

Since the integer £ - j is even, by Theorem 2(b) M ^ ^ ^ 1 = 0, and therefore9 
rm^}j = 0. Thus, no two even-numbered vertices in a Rencontres graph are adja-
cent. Similar argument shows that no two odd-numbered vertices in a Rencontres 
graph are adjacent. 

Corollary 3: Since i?£(4) is a 4-cycle, the girth of the Rencontres graph RG(n) 
is 4 for all n > 3. 

Theorem k: Vertex t;. is adjacent to v^+3 in the Rencontres graph iff £ is 
1 or 2 (mod 4). 

* \a~\ is the least integer greater than or equal to a. [a\ is the greatest 
integer less than or equal to a. 
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Proof: rm. + 3>. = (\ +_ })«n4j l (mod 2) 

i, + 1\ 
^ _ jj (mod 2), by Theorem 2(b) 

i(i + 1) , , 0, 
= « (mod 2) 

= 1, iff i is 1 or 2 (mod 4). 

The following theorem gives a necessary and sufficient condition for any 
two vertices to be adjacent in a Rencontres graph. 

Theorem 5: Vertex v^ is adjacent to Vj, where i > j and one is odd and the 
other even, iff there does not exist an integer p, 0 ̂  p < k9 such that 

BSp(i - 2) = 0 and 55p(i - 1) = 1, 

where k is the length of BS(j - 1). 

Proof: We have 

™i,j = 0 I 5)rmW+l,l (*°d 2), 
If one of i and j is odd and the other even, by Theorem 2(b) ™^_j + isi = 1-
Thus, we have to determine the condition under which 

\ ~ 2A (mod 2) = 1 
J - 1/ 

so that vertex v^ is adjacent to Vj. Let 

£5(£ - 2) = mqmq__1 . .. w ^ and 55 (j - 1) = nknk_1 ... n1nQ3 

where q ^ k. Following [2], we can write: 

DO ^ ^ 
iff ̂  > n^ , 0 < i < k 

iff 3p, 0 < p < k ^ mp < np, 
i.e. 5 wp = 0 and np = 1. 

Thuss rm^ • = 1 iff there does not exist an integer p, 0 < p < ks such that 

55p(i - 2) = 0 and BSp(j - 1) = 1, 

where k is the length of BS(j - 1) , and in that case vertex ŷ  is adjacent to 

Theorem 6: If t = 2^ + 1, where k > 1, then vertex ŷ  is adjacent to all even-
numbered vertices Vj, 2 < j < 2i, j ^ £. 

Proof: Let £ = 2 k + l , fc>l. Since £ is odd, j must be even, if vertex v± is 
adjacent to Vj . 

Case 1. 2 < j < £ 
(2k - 1\ /•2 - 1\ 
I . _ . J2TOi_1-+1 j (mod 2) = 1, by Theorems 2(b) and 5 . 
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Case 2. i < j < 2i 

rmitj = rmjti
 = \ ?k )rmi-j+i,i ^m o d 2^ = l s b y T n e o r e T n s 2 ( b ) 

and 5. 

Since, for all even j , 2 < j < 2i and j ̂  i, ™^,j ~ 1? vertex y^ is adjacent 
to all such ?;-• . 

Corollary k: If i = 2k + 1, k > 1, then degree (v^) = 2k~1 in graph RG(i) , and 
degree (i^ ) = 2k in graph i?£(2k + 1 ) . 

Theorem 7'- If i = 2fes where fc is a positive integer, then vertex v^ is adjacent 
to all odd-numbered vertices in the Rencontres graph. 

Proof: Let i = 2k, where fc > 1. Since i is even, j must be odd for adjacency. 
We have 

i2k - 2\ 
' _ i )1>mi- j + i, I (m° d 2) = 1, by Theorems 2(b) and 5. 

Since, for all odd j , 1 < j < i, vm^^ = 1, vertex y^ is adjacent to all such 

Corollary 5: If i = 2k, £ > 1, then 

(a) degree (i^) = 2 k _ 1 in graph RG(i), 

(b) degree (t^) = 2fc_:L + 1 in graph RG(2i). 

Proof: (a) Follows directly from Theorem 7. 

(b) Theorem 7 considers the adjacency of vertex v^ with y^, 1 < j < i. 
Here we also need to consider odd j such that i < j ̂  2i. In this 
case, 

*77Z„. -• = l.\ i)p?77j-i+i,i (m° d 2) = 0 except when j = 2k + 1, 7i,j \2k 

by Theorem 5. That is, for i < j < 2i, vertex y^ is adjacent to 
i^+1 only. Hence, degree (v>i) = 2*c~1 + 1 in graph RG(2i) . 

Theorem 8: I f i = 2?c + 2 9 ^ > 1 , then vertex t^ is adjacent to v , i> • , s an<3 
all odd-numbered vertices y•, i < j < 2k+1„ 

Proof: Let i = 2 4- 2, where /c is a positive integer. That v^ is adjacent to 
V1 and y^_x is evident by Theorems 2(a) and 2(b). 

/ 2k \ 
( . __ Tjrmi_J-+lil (mod 2) = 0 , by Theorem 5 . Thus, Vi i s 

Case 1. 1 < j < i - 1, and j is odd. 
2^ 

not adjacent to any odd-numbered vertex Vj , 1 < j < i - 1. 

Case 2. i < j < 2k+1, and j is odd. 

2 

Hence the theorem 

, J = (ofc + ])rmi~j+ l,i (mod 2 ) = ls ° y Theorem 5. 
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Corollary 6: If i = 2k + 2, k > 1, then 

(a) degree (vi) = 2 in graph RG(i), 

(b) degree (^) = 2 k _ 1 + 1 in graph J?G(2k + 1) . 

Proof: (a) Follows from Theorems 2(a), 2(b), and Case 1 of Theorem 8. 

(b) By Theorem 8, in graph RG(2k+1), vertex Vi is adjacent to v , yi_i' 
and 2 k _ 1 - 1 even-numbered vertices Vj 9 i < j < 2^+ 1. Therefore, 
degree (^) = 2 k ~ 1 + 1 in RG(2k+1). 

The following theorem identifies the subset of Rencontres graphs which 
contain complete bipartite graphs as subgraphs. 

Theorem 9: Complete bipartite graph Kttt is a subgraph of RG(2t) for all t > 1. 

Proof: By Theorem 3, RG(2t) is a bipartite graph with the following partition-
ing of its vertex set, 

vi = ^v2m + i\° < m < 2t~1} and 72 = {v2m | 1 < 777 < 2 t _ 1 } . 

Now, choose 7[1 c Vl9 and 7£2
 c 72 such that 

7 ' l = ^ l * U ^ 2 ^ + 1 1° < ^ < ri a n d F t2 = tV2i \l < i < t}. 
We shall prove by induction that Kt t is a subgraph of RG(2t), and consists of 
sets 7 ^ and 7^2. 

Basis. Graph Zx x is identical to RG(2) . Thus, the theorem is true for 
t = 1. 

Induction Hypothesis. Let the theorem be true for t = j ^ 1, i.e., &j,j is 
a subgraph of RG(2<]) , and the vertex sets 7? and 7' are well defined. 

Induction Step. To prove it to be true for t = j + 15 define 

7 ; + 1 , i - F i i u { y
2 i + i > M d ^ + i , 2 = 7 ; 2

 u { u 2 ^ - } -
Then, by Theorem 6, the vertex ^ 2J + 1 ^s adjacent to all even-numbered ver-
tices and, by Theorem 7, the vertex v2j+i is adjacent to all odd-numbered 
vertices in Kj j . Hence, we obtain the graph K-+1 •+ 1, which is a subgraph 
of RG(2j+1). 

The following connectivity properties are useful in the design of reliable 
communication and computer networks. From Theorems 2(b), 2(c), 6, and 7, we 
conclude that vertices V1 and i?2riogwi -1+1 always serve as two central vertices 
adjacent to all even-numbered vertices in graph RG(ji) ; and V2 is always the 
central vertex adjacent to all odd-numbered vertices in RG(n). Moreover, when 
n = 2k, k ^ 1, vertices v2 and r>n are centrally adjacent to all odd-numbered 
vertices in RG(n). 

Theorem 10: There are at least two edge-disjoint paths of length < 3 between 
any two distinct vertices in graph RG(n), n ^ 4. 

Proof: Let v^ and y^ be two vertices of graph RG(n), n ^ 4, i ^ j. 

Case 1. i = 1 and j = 2 

Two edge-disjoint paths are [̂ 19 ^ 2] and [vls V^s V3S V2]« 
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Case 2. i = 1 and j > 2 

Two edge-disjoint paths are [v19 Vj] and [v19 Vj + 29 Vj + 19 Vj] for 
j even; and [i^, V2? ^ ] and [y1, ̂ ._1} ^ ] for j odd. 

Case 3- i > 2 and j > 2 

If there is an edge between Vi and Vj 5 then it constitutes one 
path. Even if there is no such edges we have the following two 
edge-disjoint paths in different subcases. 

(i) i, even and j odd 

[ ^ s ^ i - i * v29 Vj] and [vi9 v19 Vj_l9 Vj] 

( M ) i odd and j even 

[vi9 vi_19 v19 Vj] and [vi9 v2, Vj_19 Vj] 

( M i ) i even and j even 

[vi9 v19 Vj] and [z; i s v2Uogn]_1+l9 Vj] 

( iv) i odd and j odd 
[Wi, U2, Vj] and [u. , y 2 r i o g n ) ) Vj] i f i and j < 2 r i o 8" 1 + 1 
or 

[Vi, V2, Vj] and [y,, V^^^, Vj] if i and j > 2n°^ + 3 

Theorem 10 implies that the edge-connectivity ^ 2 and that the diameter is 
3 for all RG(n)9 n > 4. 

IV. NUMBER OF EDGES IN RENCONTRES GRAPHS 

Since the cost of a communication network is proportional to the number of 
edges in the graph (these edges represent the full duplex communication lines 
among processors) , an estimation of the number of edges in graph RG(n) is im-
portant. In the following9 we derive an expression for the number of edges in 
RG(n) in terms of n9 the number of vertices in the graph. Before doing this9 
we need some lemmas. 

Lemma 2: If n = 2k+ i9 k > 1 and 1 < i < 2k
9 then d(n) = 2 • d(i)9 where d(n) is 

the degree of vertex vn in RG(n) and d(i) is the degree of vertex v^ in RG(i). 

Proof: Let i and j have different parity. For 1 < j < i9 we have 

™*.j = (} I J)™w + i,i (mod 2 ) 

= (t- 1 \) ^mod 2 ) * hy Theorem 2(b). 

Let q be the length of BS(j - 1). Then9 by Theorem 59 

dH) - E ft t) (mod 2)" 

= t h e number of j ? s , 1 < j < i , fo r which 

J9£p(£ - 2) > 5 5 p ( j ~ 1 ) , fo r 0 < p < q. 
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Now, let n = 2k-hi3k>l and 1 < i < 2k . Let 2k + i and r have different 
parity. Then, for 1 < v < n, we have 

*™«,r = (p I ? H « - P + I , I (mod 2) = (^ * - 1 2) (mod 2)' 
Clearly9 

d(n) = Z [(^/-V 2) (mod 2)" 

= 2 times the number of j!s, 1 < j < i, for which 

££p(£ - 2) > ££p(j - 1) for each p, 0 < p < q. 

This is because BSk{2k + t - 2) = 1 and BS^ (r - 1) can be 0 or 1, while 

BSk(i - 2) = BSkU - 1) = 0 (always). 

Thus* d(n) = 2 • d{i) for all i, 1 < i < 2* and k > 1. 

Corollary ?: If n = 2fc + 1 + t, for ft > 1 and 1 < i < 2k , then the degree d(n) 
of vertex fn in RG(n) is given by 

d(ri) = 2 - d(i + 1) 9 

where d("i + 1) is the degree of vertex V^ + 1 in BG(i + 1). 

Proof: This corollary is identical to Lemma 2 for all i, 9 1 < £ < 2k. Hence, to 
prove this corollary , we need to consider another case where i = 2k . In that 
case, n = 2k + 1 + 1, and by Corollary 4, d(n) = 2k and d(i + 1) = 2k~1. Thus, 
d(n) = 2 • d(i + 1) for all i such that 1 < £ < 2* and ft > 1. 

Lemma 3̂  Define e(n) to be the number of edges in the bipartite graph RG(n). 
Then 

(3» g(2/c"1) + 2fe"2, ft > 1 
e(2fe) = { (1) 

1 1 , ft = 1 

Proof: When k = 1, e(2) = 1 is obviously true. Let n = 2k
 5 k > 1. Then, 

e(2fc) = e(2 ) + the number of edges added because of the 
addition of extra 2 ~1 vertices, e.g., 
V (n/2) + l» V(n/2)+2> e 8 " 5 Vn 

- e{2 1) + the number of edges added because of the 
addition of vertices V(n/2) + 2» V(n/2) + 3> •••» vn 

+ the number of edges added because of the 
addition of vertex V2k-i + 1 

= e(2k~1) + 2 • e(2k_1) + 2k~2, by Lemma 2 and Corollary 4. 

Therefore, £(2fe) = 3 • e{2k~'1) + 2k~2
9 for A: > 1. 

Theorem 11: If n = 2k, ft > 1, then e(n) = 2 • 3k~1 ~ 2k~1 = | • nlog3 - |. 

Proof: We shall prove this theorem by solving the recurrence equation (1). Let 
n = 2k

 9 i.e., k = log n ^ 1. The homogeneous solution of (1) is e(n) = A • 3fe, 
where the arbitrary constant A Is to be evaluated from e(2). The particular 
solution of (1) is e(n) = -2 _1, so the general solution for e{n) is given by 
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e{n) = A • 3* - 2k~1. 

Since e{2) = 1 yields A = 2/3, we have 

e(n) = 2- 3l'-~l - 2*"1 = ~ - « l o s 3 - f . 

Corollary 8: The number of edges in graph RG{2k - 1) is 

e(2k - 1) = e{2k) - 2k~Y = 2 • 3k~1 - 2fe, for all k > 1. 

Proof: Follows from Corollary 5 and Theorem 11. 

Corollary 9: The number of edges in graph RG(2k + 1) is given by 

e(2k +1) = e(2k) + 2fe~1 = 2 • 3k-1, for k > 1. 

Proof: Corollary 9 can be proved easily using Corollary 4 and Theorem 11. 

Another proof can be given as follows: 

e(2k + 1) = e(2k~1 + 1) + the number of edges addes owing to 
the addition of extra 2V _ 1 vertices 

= e(2k~1 + 1) + 2 • e(2k~1 + 1), by Corollary 7 

= 3 • e(2k~1 + 1) 

= 3k~1 • e{3). 

Now, e (3) corresponds to the number of edges in graph RG(3) , which is 2; thus, 
e(2k +1) = 2 • 3fc_1. 

The expression for e(n), the number of edges in graph RG(n), is different 
for even and odd n* We prove this in the following theorem. 

Theorem 12: The number of edges in graph RG(n) is given by 

i 
Yl 2i • 3Pi ~ \ if n > 3 is odd 

e(?Z) U-l 
E 2"- • 3Pi l + 2£_ L, if n is even, 

. i - l 

where B(n - 1) = (p1, p , ..., p ) is the 5-sequence of n - 1. 

Proof: 

Case 1 . Let n > 3 be odd. Then n - 1 = n1 + n2 + • - - + r: £, where n^ = 2 £ 
with p^ > 1, 1 < i < £, Thus, 

e(n) = (sĈ ! + n2 + n3 + ••• + n£) 

= e(nx + 1) + the number of edges because of the 
addition of vertices vr +2, ..., v„ 
to i?C7(?23 + 1 ) 

= 2 • 3Pi ~ 1 + 2 • e(n2 + 1 + n3 + • • • + nz)9 

by Corollaries 7 and 9. 
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Repeating the process, we get 

e(n) = 2 • 3P^1 + 22 - 3P*~1 + 22 • e(n3 + 1 + nh + • - - + nz) 

2 • 3^~x + 22 • 3P* P2-1 + 2 a-1 . 3?£-i -1 + 2 £ . 3^-! 

i = l 

Case 2. Let n be even. Then, n - 1 = n1 + n2 + • • • + nz_1 + nl9 where n-c = 
2pt with pi > 1 for l < i < £ - l , p £ = o 5 and n£ = 1. Following 
the same procedure as in the proof of Case 1 of this theorem, we 
get 

e(n) = 2 • S^"1 + 2Z • 3^~l +••- + 2 P2-i >£-l 3^-

£- 1 
+ 2 £ _ 1 • e(nz + 1) 

X 2l • 3 ^ - 1 + 2£"1
5 since e(nz + 1) = e(2) = 1. 

i = 1 

In Section V we shall investigate the determinants of Rencontres matrices. 

V. DETERMINANTS OF RENCONTRES MATRICES 

Theorem 13' Let det(RM(n)) be the determinant of the Rencontres matrix RM(n) 
of order n. Then det(7?Af(n)) = 0 for all n > 1 except for n = 2 and det (i?Af (2)) 
= -1. 

Proof: det(i?M(l)) is obviously zero, and 

|0 ll 
det(i?M(2)) = 

1 0 
-1. 

For n > 2, there always exists k ^ 1 such that /c = [log n] - 1 and row 2^ + 1 
is identical to row 1 in matrix RM(n) by Theorem 6. Therefore, det (i?Af(n)) = 0 
for all n > 2. 

VI CONCLUSION 

We have defined Rencontres matrices, a new class of adjacency matrices con-
structed from the Rencontres number table modulo 2. The corresponding graphs 
are connected and bipartite with edge connectivity > 2, diameter 3, and girth 
4. The number of edges < (2/3) e nlo§3 - (n/2). Since the binary representa-
tion of a vertex number provides a great deal of information on its adjacencies, 
the situation may be exploited (1) in economic storage of these graphs and (2) 
in designing a routing algorithm between a pair of communicating vertices. 
These are some of the desirable properties; additional properties need to be 
studied to determine how well these graphs are suited for computer interconnec-
tion networks. 
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