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1. INTRODUCTION

Let x be an n—digit number expressed in base g; thus,
n-1
x =) a,gt with 0 <a; < g and a,_; # 0.
=0
Let k be a positive integer. Then x is called k-transposable if and only if

. (1)

n-2 .
_ 1+1
kzx —'2%)aig +a,_,
i=

Clearly, x is l-transposable if and only if all of its digits are equal. Thus,
we assume kK > 1.

Kahan [2] studied decadic k-transposable integers. He showed that k must
equal 3, that x, = 142857 and x, = 285714 are 3-transposable, and that all
other 3-transposable integers are obtained by concatenating x, or x, m times,
mz1.

In [1], this author studied k-transposable integers for an arbitrary base
g. Necessary and sufficient conditions were given for an n-digit, g-adic num-
ber to be k-transposable.

When a k-transposable integer is multiplied by k, its digits are shifted
one place to the left with the leading digit moving to the units place. In

this paper, we will generalize this shift of one place to a shift of j places,
1 <4 <n.

2. TRANSPOSABLE INTEGERS WITH ARBITRARY SHIFTS

-1 . .
We say that the n-digit number x = 2::=0aigL is a k-transposable, j-shift
integer, or a (k, j)-integer for short, if and only if
n-1-3 L n-1 i X
kx = 3, a.g*ti+ 3 aigt'("'Jl for 1 < j<mnand 1 <k<g. (2)

=0 i=n-j

For example, again consider the decadic integers 142857 and 285714. Since
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6(142857)
2(285714)

857142,
571428,

il

142857 is a (6, 3)-integer, while 285714 is a (2, 2)-integer.

We shall study (k, j)-integers for an arbitrary base g. Kahan [3] has de-
termined all decadic n-digit (k, n - 1)-integers. He called these k-reverse
transposable integers.

Rearranging the terms in (2), we get

. n-1 . . . n-1-4 .
(kg" ™7 - 1) T a gt P =(gf - k) Y a.gt. (3)
i=n-4 i=0 °
Let d be the greatest common divisor of kg"~9-1 and g7 -~ k. Then the follow-

ing lemma is immediate.

Lemma 1: Let x be an n-digit, (k, J)-integer and let d = (kg”'j -1, gj - k).

Then d satisfies the following:

(ii) (k, &) =1
(iii) k<d

(iv) gr =1 (mod d)

The following theorem gives necessary and sufficient conditions for the

existence of (k, j)-integers.

Theorem 1: There exists an n-digit, (k, j)-integer if and only if there is an

integer d with the following properties:

(i) (k, & =1
(i1) k<d
(iii) dlgd - &

(iv) g7 =1 (mod d)

Proof: Lemma 1 shows that (i)-(iv) are necessary with d = (kg”'j -1, g7 - k).
Now, suppose there exists a d satisfying (i)-(iv). Note that d divides
kg”'j - 1 since

kgn-Jd - 1 = gign-d -1 2g" - 120 (mod d).

We now construct {%] (k, j)-integers x,. Let

Lo [
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The coefficients bt,n—l’ e bt,n—j are given by

n-1 ) L ogi -k

i=§-jbt’igl_(n_g) =Tt (4)
We obtain (4) by dividing (3) by g7 - k and requiring that z:zzébt{igi‘(”_j)be
a multiple of Qi?%—kg since d divides kg"~7 - 1. Note that the highest power
of g which occurs on each side of (4) is j - 1, so the coefficients b, ; are

well defined. Using (3) we find that b, 4, ..., bt,n-j-1 are to be defined by

j C ggn-d oo
S by gt = Kid—l— £, (5)

Equation (5) is also well defined, since kt < d.

We note here that the proof of Theorem 1 is a constructive one. The digits
of k-transposable integers are found using (4) and (5). We now show that all

g have (k, j)-integers.

Theorem 2: If g =5 or g 2 7, then g has a (k, j)-integer for all j = 1. If
g =3, 4, or 6, then g has a (k, j)-integer for j 2 2.

Proof: If g =5 or g 2 7, choose k satisfying the following:

2<k<g/2 and (k, g) = 1.
Then d = g7 - k, j > 1, satisfies (i)-(iii) of Theorem 1; further, (d, g) = 1.
Hence, there exists n such that g” = 1 (mod d). By Theorem 1, g has a (k, J)-

integer.

For g = 3, 4, or 6, choose k such that
2<k<g and (k, g) = 1.
Again, let d = gj -k, g 22, and apply Theorem 1. For these g, no (k, 1)-

integers exist.

For j fixed, we now show that up to concatenation there are only a finite

number of (k, j)-integers.

n-1

Theorem 3: Suppose x = z:izoaigi is a (k, j)-integer. Let d = (kg”‘j -1,
g7 - k) and let N be the order of g in Uz, the group of units of Z,. Then x

equals some (k, j)-integer concatenated »n/N times.

Proof: Since g” = 1 (mod d), n is a multiple of N. Let
N-1 ) d
= . z = —_—
x4 iz% bt,19 , t 1, .., [k]’
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be the N-digit integers given by equations (4) and (5).

n-1 . . J -
In (3), 2:i=n_jaigl‘(”"J) must be a multiple of ﬂ—?f—@. Thus, for some

t,

n-1 ., , J _ % N-1

—(n-4) _ e (-

2 aggtt = <ch““>t = 2 by gt @P

T=n-J 1=N-J
S0

Ay _y=byy_iss for 2 =1, ..., J.
Thus,

n-1-4 n- i N— 7 -
- EL”_:_1> - _N(kg J-1 g" —1>
2 agt = (g - gren(f = Ly (01,

Note that kt < d. ©Now, since

v-1-d . g"=i -
Z bt,igl = (k d 1>t’
=0
we must have
Ay =bey-gs 2=d+1, ooy I,
Further,
- / . oy
i"_ﬂ—_«l) =<9J—k el <1<ii_~;i
< d ¢ T )tg + E t.
Hence,
n-N-1 . i 4
PTG
i=n-N-j
or b1 .
S -m-g_ (99 = K -
. 2 ,“igl"(” v-39) = ( g )t = E: ,bt,igl -
i1=n-N-g LT
Thus, a, y_;=by y_gs © =1, ceoy Joand a,_ y_;=by y_yo ¢ =4 -1, ..., N.

Continuing, we find that x equals x, concatenated n/N times.

3. (k, 1)-INTEGERS ARE ALSO (£, j)-INTEGERS

In some cases (k, 1)-integers are also (&, J)—integers. Consider the mul-

142857:

tiples of the decadic (3, 1l)-integer y

2y = 285714; 4y = 571428; 5y 714285; 6y = 857142,

Thus, y is also a (2, 2), (4, 4), (5, 5), and (6, 3)-integer. We cbserve that
y is an (&, j)-integer when & = 379 (mod 7). Here 7 =d = (g - k, kg""* - 1),
with g = 10, ¥ = 3, and n = 6. We will show that this is always the case when
fy is an n-digit number. The following lemmas will be useful.

n-1

Lemma 2: Suppose x = Z;i=0aigi is a (k, 1)-integer. Letd= (g - k, kg"™* - 1).
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Then

de = - % an_l(g” - 1.

Proof: Since d divides g - k, d = g ; k for some r. Thus, we have:

n-1 . 1 n-1 . 1 n-1 P41 n=2 P41
d_zaigl = ?(9 - k) Z Cligl = ;[Z a.g - Z aig - an—l}

=0 =0 =0 =0

1 d
= _1; an—l(gn - 1) = g - k an—l(gn - 1)_
Lemma 3: Suppose x = E:Z;éaigi is a (k, 1)-integer. Then, for j 2 2, we have
; Vl—j—l . . n-1 . .
kip = .E: aigz+g + . E: gigt—(n-J)+ qj(g” -1,
=0 i=n-g

where

g . .
r; =,§: (a,_; - ki_lan—l)gg_l'

Proof: The proof is by induction. Since the initial step with j = 2 is simi-
lar to the induction step, we will do only the latter. Consider

n-~1

. [ n=2 X . R .
kI tte = k3< Yagttt + an_1> = gk? Yla.g* - klan_1(g” - 1)
=0 =0

n-g-1 n-1 . . .
g[ > oagtti+ 3 oagtt D+ (gn - 1)] - kia,_ (g" - D

=0 i=n-J

A = ; ;
_ T - - -
= Z a,g J + ‘ Z aigi (n-g-1)

=0 i=n-g-~1

+ (ap- -1 - kjan_l)(g” - 1) +rgl@"- 1)
n-g-2 o n-1 - 1)
—(n-j-

= E: aigl+J+1-+. 2: aigz J + r}+1(gn - 1.

=0 i=n-j-1

Theorem 4: Suppose that zx = E:Z;Saigi is a (k, 1)-integer. TLet d = (g - k,
kg" ! - 1). Suppose fx is an n-digit number with £ < d. Then x is an (%, J)-
integer if ¢ = k79 (mod d).

Proof: Since % = k9 (mod d), % = k¢ - sd for some nonnegative integer s. Then

by Lemmas 2 and 3,

n-d-t o nol e ) d
= 1+J 1-n-J - n o
Lz iz%) a,g +—i=%;jaig + <rj s - % an_1>(g 1).

d .
a must equal zero. Hence, x is

Since 2x is an »n-digit number, 13 - 8 g - % %1

an (R, J)-integer.
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While (k, 1)-integers give rise to (&, j)-integers, an (%, j)-integer need
not be a (k, 1)-integer. TFor example, the decadic number 153846 is a (4, 5)-

integer, but it is not a (k, l)-integer for any k.
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