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The following problem appears on page 65 of Elementary Number Theory by 

David M. Burton: 

Show that 13 is the largest prime that can divide two successive integers 
of the form n2 + 3. 

In this note5 it will be shown that 13 is the only prime that will divide 

two successive integers of the form n + 3 , and these pairs will be determined. 

In addition, the following questions will be investigated: Is the prime 13 

unique? That is, if p is an odd prime, is there an integer a such that p is 
the largest prime that divides successive integers of the form n2 + a? And, 

under what conditions will the prime p be the only divisor? Finally, precisely 

which pairs of successive integers are divisible by p? 

The following theorem will answer these questions. The case p = 13 will be 

treated in a corollary following the theorem. 

Theorem: Let p be an odd prime. If p is of the form 4?c+ ls then p is the only 
prime that divides successive integers of the form n2 + k$ and p divides suc-

cessive pairs precisely when n is of the form bp + 2k9 for any integer b. If 

p is of the form hk + 3, then p is the largest prime that divides successive 

integers of the form n2 + (3k + 2), and p divides successive pairs precisely 

when n is of the form bp + (2k + 1) , for any integer b. Furthermore, p will be 

the only prime divisor if and only if p = 3. 

Proof: In both cases, substitution can be used to show that the prescribed di-

visibility will hold; hence, only the necessity of the indicated forms will 

need to be shown. 

Let p be of the form 4fc + 1, and suppose that q is any prime divisor of 
n2 + k and (n 4- I)2 + k. Since q divides the difference of these integers, q 
must divide In + 1. Now, 
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4(n2 + k) = (2n + l)(2n - 1) + (4fc + 1). 

Since g divides both n2 + k and 2n + 1, q divides p = 4fc + 1. Hence, q = p, 
and p is the only such prime divisor. Since p must divide 2n + 1, 2n + 1 = 0 

(mod p) . This congruence has the unique solution, n = (p - l)/2 (mod p) ; thus, 

n must be of the form bp + 2k, where b is any integer. 
Let p be of the form kk + 3, and suppose that (7 is any prime divisor of 

n2 + (3fc + 2) and (n 4- I)2 + (3fc + 2 ) . As before, q must divide 2n + 1. Now, 

4(n2 + (3k + 2)) = (2w+ l)(2n - 1) + 3(4fe + 3). 

As before, q must divide the last term 3(4fc + 3), but in this case q can be 3 
or p. If p = 35 then p is the only such prime divisor; if not, then p is simply 

the largest such prime divisor. (Of course, it should be noted that 3 does, in 

fact, divide some successive pairs in the case k > 0. This will be the case 

when n is of the form 3c + 1, c any integer.) Finally, the same argument used 

previously can be used to show that n must be of the form bp + (2k + 1), b any 
integer. 

Corollary: The prime p = 13 is the only prime that divides successive terms of 

the form n2 + 3 and does so precisely when n is of the form 132? + 6, where b is 
any integer. 

Proof: The first case of the Theorem applies with k = 3. 
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