ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, all solutions should be submitted on separate signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE

H-421 Proposed by Piero Filipponi, Rome, Italy
Let the numbers $U_{n}(m)$ (or merely U_{n}) be defined by the recurrence relation

$$
\begin{equation*}
U_{n+2}=m U_{n+1}+U_{n} ; \quad U_{0}=0, U_{1}=1 \tag{1}
\end{equation*}
$$

where $m \in N=\{1,2, \ldots\}$.
Find a compact form for

$$
S(k, h, n)=\sum_{j=0}^{n-1} U_{k+j h} U_{k+(n-1-j) h} \quad(k, h, n \in N) .
$$

Note that, in the particular case $m=1, S(1,1, n)=F_{n}^{(1)}$ is the $n^{\text {th }}$ term of the Fibonacci first convolution sequence [2].

References

1. M. Bickne11. "A Primer on the Pell Sequence and Related Sequences." The Fibonacci Quarterly 13, no. 4 (1975):345-349.
2. V. E. Hoggatt, Jr. "Convolution Triangles for Generalized Fibonacci Numbers." The Fibonacci Quarterly 8, no. 2 (1970):158-171.

H-422 Proposed by Larry Taylor, Rego Park, NY
(A1) Generalize the numbers $(2,2,2,2,2,2,2)$ to form a seven-term arithmetic progression of integral multiples of Fibonacci and/or Lucas numbers with common difference F_{n}.
(A2) Generalize the numbers $(1,1,1,1,1,1)$ to form a six-term arithmetic progression of integral multiples of Fibonacci and/or Lucas numbers with common difference F_{n}.
(A3) Generalize the numbers (4, 4, 4, 4, 4) to form a five-term arithmetic progression of integral multiples of Fibonacci and/or Lucas numbers with common difference $5 F_{n}$ 。
(A4) Generalize the numbers $(3,3,3,3),(3,3,3,3),(3,3,3,3)$ to form three four-term، arithmetic progressions of integral multiples of Fibonacci and/ or Lucas numbers with common differences $F_{n}, 5 F_{n}, F_{n}$, respectively.
(B) Generalize the Fibonacci and Lucas numbers in such a way that, if the Fibonacci numbers are replaced by the generalized Fibonacci numbers and the Lucas numbers are replaced by the generalized Lucas numbers, the arithmetic progressions still hold.

SOLUTIONS

Late Acknowledgment: C. Georghiou solved H-394.

A Simple Sequence

H-400 Proposed by Arne Fransen, Stockholm, Sweden (Vol. 24, no. 3, August 1986)

For natural numbers h, k, with k odd, and an irrational a in the Lucasian sequence $V_{k h}=a^{k h}+\alpha^{-k h}$, define $y_{k} \equiv V_{k h}$. Put

$$
y_{k}=\sum_{r=0}^{n} c_{r}^{(2 n+1)} y_{1}^{(2 r+1)}, \text { with } k=2 n+1
$$

Prove that the coefficients are given by
$c_{r}^{(2 n+1)}\left\{\begin{array}{l}\equiv 1 \text { for } r=n, \\ =(-1)^{n-r}(2 n+1) \sum_{j=1}^{J} \frac{1}{2 j-1}\binom{n-j}{2(j-1)}\binom{n-1-3(j-1)}{r-(j-1)} \text { for } 0 \leqslant r<n,\end{array}\right.$
where $J=\min \left(\left[\frac{n+2}{3}\right],\left[\frac{n+1-r}{2}\right], r+1\right)$.
A1so, is there a simpler expression for $C_{r}^{(2 n+1)}$?
Solution by Paul Bruckman, Fair Oaks, CA
Let $a^{h}=e^{i \theta}$, so that

$$
\begin{equation*}
y_{k}=2 \cos k \theta \tag{1}
\end{equation*}
$$

Examining the Chebyshev polynomials of the first kind (viz. 22.3.15 of [1]), we find the following relation:

$$
\begin{equation*}
T_{m}(\cos \theta)=\cos m \theta, \quad m=1,2,3, \ldots, \tag{2}
\end{equation*}
$$

where (22.3.6, ibid.)

$$
\begin{equation*}
T_{m}(x)=\sum_{r=0}^{\left[\frac{1}{2} m\right]} \frac{1}{2} m(-1)^{r} \frac{\binom{m-r}{r}}{m-r}(2 x)^{m-2 r} \tag{3}
\end{equation*}
$$

Substitute $x=\cos \theta, m=k=2 n+1$ in (3). Then, from (2) and (1),

$$
\cos k \theta=\frac{1}{2} y_{k}=\sum_{r=0}^{n} \frac{1}{2} k(-1)^{r} \frac{\binom{k-r}{r}}{k-r} y_{1}^{k-2 r} ;
$$

further substituting $n-r$ for r gives

$$
\begin{equation*}
y_{k}=k \sum_{r=0}^{n}(-1)^{n-r} \frac{\binom{n+r}{2 r}}{2 r+1} y_{1}^{2 r+1} . \tag{4}
\end{equation*}
$$

ADVANCED PROBLEMS AND SOLUTIONS

It follows that we have obtained the desired simple expression:

$$
\begin{equation*}
c_{r}^{(k)}=\frac{k}{2 r+1}(-1)^{n-r}\binom{n+r}{2 r} . \tag{5}
\end{equation*}
$$

Note the following:

$$
\begin{equation*}
c_{n}^{(k)}=1 . \tag{6}
\end{equation*}
$$

Let the given alleged expression for $c_{r}^{(k)}$ be denoted by $b_{r}^{(k)}$. Thus,

$$
\begin{equation*}
b_{r}^{(k)} \equiv(-1)^{n-r} k \sum_{j=0}^{J-1} \frac{1}{2 j+1}\binom{n-1-j}{2 j}\binom{n-1-3 j}{r-j}, 0 \leqslant r<n . \tag{7}
\end{equation*}
$$

Note that the conditions $2 j \leqslant n-1-r, j \leqslant r$ imply $3 j \leqslant n-1$; hence,

$$
J-1=\min \left(\left[\frac{1}{2}(n-1-r)\right], r\right) .
$$

After some manipulation, we obtain

$$
\begin{equation*}
b_{r}^{(k)}=(-1)^{n-r} \frac{k}{n-r} \sum_{j=0}^{J-1}\binom{n-r}{2 j+1}\binom{n-1-j}{r-j} . \tag{8}
\end{equation*}
$$

To sum (8), we use the following combinatorial identity (viz. 3.25 in [2]):

$$
\begin{equation*}
\sum_{j=0}^{r}\binom{x}{2 j+1}\binom{x+r-j-1}{r-j}=\binom{x+2 r}{2 r+1} \tag{9}
\end{equation*}
$$

Let $x=n-r$ in (9). Note that terms for which $n-r<2 j+1$ vanish, so $j \leqslant$ [$\left.\frac{1}{2}(n-1-r)\right] ;$ also, $j \leqslant r$. Thus, (9) becomes

$$
\begin{equation*}
\sum_{j=0}^{J-1}\binom{n-r}{2 j+1}\binom{n-1-j}{r-j}=\binom{n+r}{2 r+1} \tag{10}
\end{equation*}
$$

Comparison with (8) yields $b_{r}^{(k)}=\frac{k}{n-r}(-1)^{n-r}\binom{n+r}{2 r+1}$, or

$$
\begin{equation*}
b_{r}^{(k)}=\frac{k}{2 r+1}(-1)^{n-r}\binom{n+r}{2 r}, \quad 0 \leqslant r<n . \tag{11}
\end{equation*}
$$

Comparison of (5) and (11) yields the desired relation:

$$
\begin{equation*}
b_{r}^{(k)} \equiv c_{r}^{(k)}, 0 \leqslant r<n . \quad \text { Q.E.D. } \tag{12}
\end{equation*}
$$

References

1. M. Abramowitz \& I.A. Stegun, eds. Handbook'of Mathematical Functions, with Formulas, Graphs and Mathematical Tables. 9th printing. National Bureau of Standards, 1970.
2. H. W. Gould. Combinatorial Identities. Morgantown, West Virginia, 1972.

Fibonacci in His Prime

H-401 Proposed by Albert A. Mullin, Huntsville, AL (Vol. 24, no. 3, August 1986)

It is well known that, if $n \neq 4$ and the Fibonacci number F_{n} is prime, then n is prime.

ADVANCED PROBLEMS AND SOLUTIONS

(1) Prove or disprove the complementary result: If $n \neq 8$ and the Fibonacci number F_{n} is the product of two distinct primes then n is either prime or the product of two primes, in which case at least one prime factor of F_{n} is Fibonacci.
(2) Define the recursions $u_{n+1}=F_{u_{n}}, u_{1}=F_{m}, m \geqslant 6$. Prove or disprove that each sequence $\left\{u_{n}\right\}$ represents only finitely many primes and finitely many products of two distinct primes.

Solution by Lawrence Somer, Washington, D.C.
(1) The result is true. It was proved in both [3] and [4] that F_{n} is the product of two distinct primes only if $n=8$ or n is of the form $p, 2 p$, or p^{2}, where p is an odd prime. It is well known that if $m \mid n$, then $F_{m} \mid F_{n}$. A prime p is called a primitive divisor of F_{n} if $p \mid F_{n}$, but $p \nmid F_{n}$ for $0<m<n$. In [1], R. Carmichael proved that F_{n} has a primitive prime divisor for every n except $n=1,2,6$, or 12 . If $n=1,2,6$, or 12 , then F_{n} is not the product of two distinct primes. It thus follows that if $n>6$ and n is of the form $2 p$ or p^{2}, then F_{n} has at least two distinct prime divisors-one of the primitive prime divisors of F_{p} and one of the primitive prime divisors of F_{n}. Clearly, every prime divisor of F_{p} is a primitive divisor. Thus, if F_{n} is the product of two distinct primes and $n=2 p$ or $n=p^{2}$, then F_{p} must be a prime divisor of F_{n}. The result now follows.
(2) As stated by the proposer, if $n \neq 4$, then F_{n} can be prime only if n is prime. Thus, it is conceivable that if $p>6, p$ is a prime, and $u_{1}=F_{p}$ is prime, then u_{n} is prime for all n, and $\left\{u_{n}\right\}$ represents infinitely many primes. However, if u_{n} is not prime for some n, then we claim that, for any fixed positive integer k, there exist only finitely many positive integers n such that u_{n} has exactly k distinct prime divisors. In particular, $\left\{u_{n}\right\}$ represents only finitely many products of two distinct primes no matter what u_{1} is. In fact, the following theorem and corollary are true.

Theorem: Let $\left\{u_{n}\right\}$ be defined by $u_{n+1}=F_{u_{n}}, u_{1}=F_{m}, m \geqslant 6$. Let $d\left(u_{n}\right)$ denote the number of distinct prime divisors of u_{n}, then $d\left(u_{n+1}\right) \geqslant d\left(u_{n}\right)$. If $d\left(u_{n}\right)=$ $r \geqslant 3$, then

$$
d\left(u_{n+1}\right) \geqslant 2^{r}-3>d\left(u_{n}\right)
$$

If $d\left(u_{n}\right)=2$ and if it is not the case that both $n=1$ and $u_{n}=F_{9}=34$, then $d\left(u_{n+1}\right) \geqslant 3>d\left(u_{n}\right)$. If $u_{n}=F_{9}=34$, then $n=1$ and $d\left(u_{n+1}\right)=2=d\left(u_{n}\right)$. If $d\left(u_{n}\right)=1$ and $u_{n}=p^{s}$, where p is an odd prime and $s \geqslant 1$, then $d\left(u_{n+1}\right) \geqslant s$. If $d\left(u_{n}\right)=1$ and $u_{n}=2^{s}$, where $s \geqslant 2$, then $d\left(u_{n+1}\right) \geqslant s-1$.

Corollary: Let t be the least positive integer, if it exists, such that u_{t} is not a prime. Then $\left\{u_{n}\right\}$ represents exactly $t-1$ primes and at most t integers that are prime powers. If such a positive integer t does not exist, then $\left\{u_{n}\right\}$ represents infinitely many primes and only primes. For a fixed integer $k \geqslant 3$, $\left\{u_{n}\right\}$ represents at most one integer having exactly k distinct prime divisors. If $u_{1} \neq 34=F_{9}$, then $\left\{u_{n}\right\}$ represents at most one integer having exactly two prime divisors. If $u_{1}=34=F_{9}$, then $\left\{u_{n}\right\}$ represents exactly two integers having exactly two distinct prime divisors.

Proof of the Theorem: By Carmichael's result in [2] stated earlier, F_{n} has a primitive prime divisor if $n \neq 1,2,6$, or 12 . Suppose $d\left(u_{n}\right)=r \geqslant 3$. Then u_{n} has 2^{r} distinct divisors that are products of distinct primes or equal to 1 . If k is a divisor of u_{n} which is the product of distinct primes and if $k \neq 1$,

2, or 6 , then $F_{k} \mid F_{u_{n}}$ and F_{k} has at least one primitive prime divisor. It thus follows that $d\left(u_{n+1}\right) \geqslant 2^{r}-3>d\left(u_{n}\right)=r$.

Now suppose $d\left(u_{n}\right)=2$ and $u_{n} \neq F_{9}=34$. We claim that $d\left(u_{n+1}\right) \geqslant 3$. First we prove that if $d\left(u_{n}\right)=2, u_{n} \neq F_{9}=34$, and $u_{n} \neq F_{12}=144$, then $2 \nmid u_{n}$. If $2 \mid F_{j}$, then it is known that $3 \mid j$. If $j=3 i$, where $i \geqslant 5$, then F_{j} is divisible by F_{3}, F_{i}, and $F_{3 i}$, each of which has a primitive prime divisor. Thus, $F_{3 i}$, $i \geqslant 5$, has at least three distinct prime divisors. The result now follows because F_{3} and F_{6} do not have exactly two distinct prime divisors. Thus, u_{n} has exactly two distinct odd prime divisors p and q. Then u_{n+1} is divisible by F_{p}, F_{q}, and $F_{p q}$, each of which has a primitive prime divisor. Hence, we have

$$
d\left(u_{n+1}\right) \geqslant 3>d\left(u_{n}\right)=2 .
$$

If $u_{n}=F_{12}=144$, then $u_{n+1}=F_{144}$. By the table given in [1, p. 8], $d\left(F_{144}\right)$ $=11$, and the claim follows. Now suppose $u_{n}=F_{9}=34$. Since 9 is not a Fibonacci number, we must have that $n=1$. By the table given in [1, p. 2],

$$
u_{n+1}=F_{34}=5702887=1597.3571
$$

and $d\left(u_{n+1}\right)=2=d\left(u_{n}\right)$.
Now consider the case in which $d\left(u_{n}\right)=1$ and $u_{n}=p^{s}$, where p is an odd prime and $s \geqslant 1$. Then u_{n+1} is divisible by $F_{p i}$ for $1 \leqslant i \leqslant s$, each of which has a primitive prime divisor. Hence, $d\left(u_{n+1}\right) \geqslant s$. Finally, suppose $d\left(u_{n}\right)=1$ and $u_{n}=2^{s}$, where $s \geqslant 2$. Then u_{n+1} is divisible by $F_{2^{i}}$ for $2 \leqslant i \leqslant s$, each of which has a primitive prime divisor. Consequently,

$$
d\left(u_{n+1}\right) \geqslant s-1
$$

Proof of the Corollary: This follows immediately from the proof of the Theorem above upon noting that $u_{n+1}>u_{n}$ and that F_{n} is a power of 2 only in the cases $F_{3}=2$ and $F_{6}=8=2^{3}$.

References

1. Brother Alfred Brousseau. Fibonacci and Related Number Theoretic Tables. Santa Clara, Calif.: The Fibonacci Association, 1972.
2. R. D. Carmichael. "On the Numerical Factors of the Arithmetic Forms $\alpha^{n}+$ $\beta^{n} . "$ Annals of Mathematics, 2nd Ser. 15 (1913):30-70.
3. L. Somer. Solution to Problem B-456, proposed by A. A. Mullin. The Fibonacci Quarterly 20, no. 3 (1982): 283.
4. L. Somer. Solution to Problem H-345, proposed by A. A. Mullin. The Fibonacci Quarterly 22, no. 1 (1984):92-93.

Also solved or partially solved by P. Bruckman, J. Desmond, and L. Kuipers.
Just a Game
H-402 Proposed by Piero Filipponi, Rome, Italy
(Vol. 24, no. 3, August 1986)
A MATRIX GAME (from the Italian TV serial Pentathlon).
For complete details of this very interesting problem, see pages 283-84 of The Fibonacci Quarterly 24, no. 3 (August 1986).

Solution by Paul S. Bruckman, Fair Oaks, CA
Given $n \geqslant 1$, let X_{n} denote the set of $1 \times n$ vectors $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right), X_{n}^{\prime}$ the set of $n \times 1$ vectors $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)^{\prime}$ with $\theta_{i}=0$ or 1 (chosen randomly). Let $T_{n}=X_{n}^{n}=X_{n}^{n}$ denote the set of all $n \times n$ matrices with entries either 0 or 1. Let $\underline{\delta}_{n} \equiv(0,0, \ldots, 0) \in \chi_{n}, \underline{\varepsilon}_{n} \equiv(1,1, \ldots, 1) \in X_{n}$; likewise, $\underline{\delta}_{n}^{\prime} \equiv(0,0$, $\ldots, 0)^{\prime} \in X_{n}^{\prime}, \underline{\varepsilon}_{n}^{\prime} \equiv(1,1, \ldots, 1)^{\prime} \in X_{n}^{\prime}$. Let $\rho_{n} \equiv\left\{\underline{\delta}_{n}, \underline{\varepsilon}_{n}\right\}, \rho_{n}^{\prime} \equiv\left\{\underline{\delta}_{n}^{\prime}, \underline{\varepsilon}_{n}^{\prime}\right\} ; \sigma_{n} \equiv$ $\left\{\underline{\delta}_{n}, \underline{\delta}_{n}^{\prime}\right\}, \tau_{n} \equiv\left\{\underline{\varepsilon}_{n}, \underline{\varepsilon}_{n}^{\prime}\right\}$. We say a matrix contains a vector if the vector is either a row or a column, as appropriate, of the matrix.

Let A_{n} denote the subset of T_{n} containing at least one element of $\rho_{n} \cup \rho_{n}^{\prime}$; Let B_{n} denote the subset of T_{n} containing at least one element of ρ_{n};
Let C_{n} denote the subset of T_{n} containing at least one element of ρ_{n}^{\prime};
Let D_{n} denote the subset of T_{n} containing at least one element of $\rho_{n}, \rho_{n}^{\prime}$.
We first observe that $\left|T_{n}\right|=2^{n^{2}}$. Moreover,

$$
\begin{equation*}
P_{n}=\left|A_{n}\right| /\left|T_{n}\right|=2^{-n^{2}}\left|A_{n}\right| \tag{1}
\end{equation*}
$$

By symmetry, we see that $\left|B_{n}\right|=\left|C_{n}\right|$. Also, $\left|A_{n}\right|=\left|B_{n}\right|+\left|C_{n}\right|-\left|D_{n}\right|$, so

$$
\begin{equation*}
\left|A_{n}\right|=2\left|B_{n}\right|-\left|D_{n}\right| \tag{2}
\end{equation*}
$$

To evaluate $\left|B_{n}\right|$, we note that B_{n}^{*} is the subset of T_{n} containing no elements of ρ_{n}. Since each such (row) element of B_{n}^{*} may be chosen in $2^{n}-2$ ways, thus, $\left|B_{n}^{*}\right|^{n}=\left(2^{n}-2\right)^{n}$. Hence,

$$
\begin{equation*}
\left|B_{n}\right|=2^{n^{2}}-\left(2^{n}-2\right)^{n} . \tag{3}
\end{equation*}
$$

To evaluate $\left|D_{n}\right|$, we first partition D_{n} into the two (disjoint) sets $D_{n}^{(0)}$ and $D_{n}^{(1)}$, defined as follows: $D_{n}^{(0)}$ is the subset of T_{n} containing σ_{n}, $D_{n}^{(1)}$ is the subset of T_{n} containing τ_{n}. Note that no element of T_{n} can contain $\left\{\underline{\delta}_{n}, \underline{\varepsilon}_{n}^{\prime}\right\}$ or $\left\{\underline{\delta}_{n}^{\prime}, \underline{\varepsilon}_{n}\right\}$. By symmetry, $\left|D_{n}^{(0)}\right|=\left|D_{n}^{(1)}\right|$. Therefore,

$$
\begin{equation*}
\left|D_{n}\right|=2\left|D_{n}^{(0)}\right| \tag{4}
\end{equation*}
$$

To evaluate $\left|D_{n}^{(0)}\right|$, we further partition $D_{n}^{(0)}$ into the (disjoint) sets $D_{n, k}^{(0)}, k=$ $1,2, \ldots . n$, where $D_{n, k}^{(0)}$ is the subset of $D_{n}^{(0)}$ with at least one $\underline{\delta}_{n}$, with $\underline{\delta}_{n}^{\prime}$ in the $K^{\text {th }}$ column, but with no $\underline{\delta}_{n}^{\prime}$ in any of the preceding columns. Thus,

$$
\begin{equation*}
\left|D_{n}^{(0)}\right|=\sum_{k=1}^{n}\left|D_{n, k}^{(0)}\right| \tag{5}
\end{equation*}
$$

Now, $D_{n, 1}^{(0)}$ is the subset of T_{n} with at least one $\underline{\delta}_{n}$ and with first column $\underline{\delta}_{n}^{\prime}$; this is equivalent to the set difference $E-F$, where E is the subset of T_{n} with first column $\underline{\delta}_{n}^{\prime}, F$ is the subset of E containing no $\underline{\delta}_{n}$. We enumerate E by considering the rows of any matrix in E. Each such row must have 0 as its first element, with the other elements random. This involves 2^{n-1} choices for each such row; hence, $|E|=2^{(n-1) n} \cdot|F|$ is enumerated similarly, except that each row of any matrix in F must also not be $\underline{\delta}_{n}$. This involves $2^{n-1}-1$ choices for each row of any matrix in F; hence, $|F| \equiv\left(2^{n-1}-1\right)^{n}$. Therefore,

$$
\begin{equation*}
\left|D_{n, 1}^{(0)}\right|=2^{(n-1) n}-\left(2^{n-1}-1\right)^{n} \tag{6}
\end{equation*}
$$

Next, we evaluate $\left|D_{n, 2}^{(0)}\right| 。 D_{n, 2}^{(0)}$ is the subset of T_{n} with at 1 east one $\underline{\delta}_{n}$, with the first column not $\underline{\delta}_{n}^{\prime}$ and with second column $\underline{\delta}_{n}^{\prime}$. Thus, $D_{n, 2}^{(0)}$ is equivalent to the set difference $G-H$, where G is the subset of T_{n} with at least one $\underline{\delta}_{n}$ and second column $\underline{\delta}_{n}^{\prime}, H$ is the subset of G where both first and second columns are $\underline{\delta}_{n}^{\prime}$. By symmetry, we see that $|G|=\left|D_{n, 1}^{(0)}\right|$. To evaluate $|H|$, we see that H is the set difference $J-K$, where J is the subset of T_{n} with both first and second columns $\underline{\delta}_{n}^{n}$, and K is the subset of J containing no $\frac{\delta}{n}$. By similar reasoning, $|J|=2^{(\overline{n-2}) n},|K|=\left(2^{n-2}-1\right)^{n}$. Hence, $|H|=2^{(n-2) \bar{n}}-\left(2^{n-2}-1\right)^{n}$,

ADVANCED PROBLEMS AND SOLUTIONS

and so

$$
\begin{equation*}
\left|D_{n, 2}^{(0)}\right|=2^{(n-1) n}-\left(2^{n-1}-1\right)^{n}-\left\{2^{(n-2) n}-\left(2^{n-2}-1\right)^{n}\right\} \tag{7}
\end{equation*}
$$

A moment's reflection shows us where this general process leads us; first, however, we make the following convenient definition:

$$
\begin{equation*}
a_{k}=2^{(n-k) n}-\left(2^{n-k}-1\right)^{n}, k=0,1,2, \ldots, n . \tag{8}
\end{equation*}
$$

We then find: $\left|D_{n, 1}^{(0)}\right|=\alpha_{1},\left|D_{n, 2}^{(0)}\right|=\alpha_{1}-\alpha_{2}=-\Delta \alpha_{1},\left|D_{n, 3}^{(0)}\right|=\alpha_{1}-2 \alpha_{2}+\alpha_{3}=\Delta^{2} \alpha_{1}$, etc.; in general, we find

$$
\begin{equation*}
\left|D_{n, k}^{(0)}\right|=(-1)^{k-1} \Delta^{k-1} \alpha_{1}, k=1,2, \ldots, n . \tag{9}
\end{equation*}
$$

Therefore, by (5), $\left|D_{n}^{(0)}\right|=\sum_{k=1}^{n}(-1)^{k-1} \Delta^{k-1} \alpha_{1}$. This expression can be slightly simplified as follows:

$$
\begin{aligned}
& \sum_{k=1}^{n}(-1)^{k-1} \Delta^{k-1} a_{1}=\sum_{k=1}^{n}(-1)^{k-1} \Delta^{k-1}(1+\Delta) a_{0} \\
& =\sum_{k=1}^{n}(-1)^{k-1} \Delta^{k-1} a_{0}-\sum_{k=1}^{n}(-1)^{k} \Delta^{k} a_{0}=-\left.(-1)^{k-1} \Delta^{k-1} a_{0}\right|_{1} ^{n+1}=a_{0}-(-1)^{n} \Delta^{n} a_{0} .
\end{aligned}
$$

In terms of the binomial expansion,

$$
\begin{equation*}
\left|D_{n}^{(0)}\right|=\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} a_{k} . \tag{10}
\end{equation*}
$$

We may also express $\left|B_{n}\right|$ in (3) in terms of α_{1}, since we see from (3) that $\left|B_{n}\right|=2^{n}\left(2^{(n-1) n}-\left(2^{n-1}-1\right)^{n}\right)$, i.e.,

$$
\begin{equation*}
\left|B_{n}\right|=2^{n} \alpha_{1} . \tag{11}
\end{equation*}
$$

Using (2), (4), (10), and (11), we therefore obtain:

$$
\begin{equation*}
\left|A_{n}\right|=2\left(2^{n} \alpha_{1}-\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} \alpha_{k}\right) . \tag{12}
\end{equation*}
$$

Finally, from (1), we obtain the desired exact expression:

$$
\begin{equation*}
P_{n}=2^{1-n^{2}}\left(2^{n} \alpha_{1}-\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} \alpha_{k}\right) \tag{13}
\end{equation*}
$$

where the α_{k}^{\prime} s are given by (8).
After some computations, we obtain the following values from (13): $P_{1}=1$, $P_{2}=.875, P_{3}=205 / 256 \doteq .8008$, as discovered by the proposer. However, we further obtain: $P_{4}=21,331 / 32,768 \doteq .6510, P_{5}=7,961,061 / 16,777,216 \doteq .4745$, $P_{6}=10,879,771,387 / 34,559,738,368 \doteq .3166, P_{7} \doteq .1978, P_{8} \doteq .1215, P_{9} \doteq .0680$, and $P_{10} \doteq .0383$, all of which values are different from those published in the statement of the problem.

Nevertheless, the proposer's conjecture is correct, and is easily proved. Note, from (13), that $P_{n}<2^{1-n^{2}} 2^{n} a_{1}$. Also,

$$
\begin{aligned}
\alpha_{1} & =2^{n^{2}-n}-\left(2^{n-1}-1\right)^{n}=2^{n^{2}-n}\left\{1-\left(1-2^{1-n}\right)^{n}\right\} \\
& =2^{n^{2}-n}\left\{1-1+n \cdot 2^{1-n}-\cdots\right\}<n \cdot 2^{n^{2}-2 n+1}
\end{aligned}
$$

Hence, $P_{n}<2^{1+n-n^{2}} \cdot n \cdot 2^{n^{2}-2 n+1}$, or

$$
\begin{equation*}
P_{n}<\frac{4 n}{2^{n}} \tag{14}
\end{equation*}
$$

Clearly, $\lim _{n \rightarrow \infty} 4 n \cdot 2^{-n}=0$. Hence, $\lim _{n \rightarrow \infty} P_{n}=0$. Q.E.D.

