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PROBLEMS PROPOSED IN THIS ISSUE 

H-421 Proposed by Piero Filipponi, Rome, Italy 

Let the numbers U (m) (or merely U ) be defined by the recurrence relation 

in 
Un + 2 -rnUn + l +Un; UQ = 0, tf, = 1, 

where meN = {1, 2, . . . } . 
Find a compact form for 

n-l 
S(ks ft5 n) = E Uk + j h U k + ( n „ l _ - ) h (fc, h, n€N)« 

3=0 

Note that, in the particular case 777 = 1, S (1, 1, ft) = F(1) is the nth term of 
the Fibonacci first convolution sequence [2]. 
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H-422 Proposed by Larry Taylor, Rego Parkf NY 

(A1) Generalize the numbers (2, 2, 2, 2, 2, 2 , 2) to form a seven-term arith-
metic progression of integral multiples of Fibonacci and/or Lucas numbers with 
common difference Fn . 

(A2) Generalize the numbers (1,1,1,1,1,1) to form a six-term arithmetic 
progression of integral multiples of Fibonacci and/or Lucas numbers with common 
difference Fn . 

(A3) Generalize the numbers (4, 4,4, 4,4) to form a five-term arithmetic 
progression of integral multiples of Fibonacci and/or Lucas numbers with common 
difference 5Fri • 
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(A4) Generalize the numbers (3,3 93 9 3) 9 ( 3 S 3 3 3 3 3 ) 5 (3,3,3,3) to form 
three four-term* arithmetic progressions of integral multiples of Fibonacci and/ 
or Lucas numbers with common differences Fn, 5Fn , Fn , respectively. 

(B) Generalize the Fibonacci and Lucas numbers in such a way that, if the 
Fibonacci numbers are replaced by the generalized Fibonacci numbers and the 
Lucas numbers are replaced by the generalized Lucas numbers, the arithmetic 
progressions still hold, 

SOLUTIONS 

Late Acknowledgment: C. Georghiou solved H™394„ 

A Simple Sequence 

H-400 Proposed by Arne Fransen, Stockholm, Sweden 
(Vol. 24, no, 3, August 1986) 

For natural numbers h9 k5 with k odd, and an irrational a in the Lucasian 
kh = akh + a~kh , define yk E Vkh . Put 

n 
yk = Y,eT W >> wlth k = 2n+l. 

ci2n+» J J 

, _ . I\n + 21 \n + 1 - p] where J = mini — , «— , r + 

(2w+ l)?,(2r+ 1) 

Prove that the coefficients are given by 

E 1 for v = n, 

- < - 1 > " - " < 2 " + ^ s r r r G V - W C ; - </-(i)"I}) *» ° < * < -
1 

Also, is there a simpler expression for c^~"+ '? 

Solution by Paul Bruckman, Fair Oaks, CA 

Let ah = eiQ , so that 

y = 2 cos ^0. (1) 

Examining the Chebyshev polynomials of the first kind (viz. 22*3*15 of [1]), 
we find the following relation: 

2^ (cos 0) = cos mQ9 m = 1, 2, 3, ..., (2) 

where (22*3.6, ibid.) 

Tmtx) = E im(-Dr V ^ T ^ ) ^ " - (3) 

r = 0 mi 
Substitute x = cos 9, m = k = In + 1 in (3). Then, from (2) and (1), 

(k 
( ~P) 

cos kQ = iyk = En*fe(-Dr \r_J y\'2r; r=0 

further substituting n - r for r gives 
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in + r\ in + r\ 
L f_i\n-r \ 2r J 2P+1 
— n } 2V + 1 y i yk - f c p E o ( - i ) n - ' ^ r - f J / r 1 . W) 

It follows that we have obtained the desired simple expression: 

Cr 2r + l{ } \ 2r ) ' K J 

Note the following: 

4 k ) = i- (6) 
Let the given alleged expression for c^ be denoted by bv. Thuss 

J-I 

**5 <-•>"-* .?„ F H " " i " x ; ! . -,M) • ° < - < - (7) 
Note that the conditions 2j ̂  ft - 1 - p9 j < r imply 3j ̂  ft - 1; hence9 

J - 1 = min([J(n - 1 - p)]3 r). 
After some manipulation, we obtain 

To sum (8)5 we use the following combinatorial identity (viz* 3.25 in [2]): 

l , ( 2 /+ 1)r+::r')-&vi)- <»> 
Let x = ft - r in (9). Note that terms for which n - r < 2j + 1 vanishs so j < 
[J(ft - 1 - P) ] ; also5 j ̂  p. Thus9 (9) becomes 

J --^-1 n - r \(n - 1 ~ j \ _ / ft + P \ (10) 
j : 

fc / 1 N n _p / f t + P 

y-r I n - r \ m - 1 ~ J \ _ / ft + P \ 
. ^ 0 \ 2 j + 1 A P - J / " \ 2 P + I T 

Comparison with (8) yields b™ = ̂ T ^ ' ^ ' ^ r V l ) » or 

br S2Fn^l) V 2P ) > 0 < ^ < ^ (U> 

Comparison of (5) and (11) yields the desired relation: 

b™ = cf\ 0 < P < ft,, Q.E.D. (12) 
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Fibonacci in His Prime 

H-401 Proposed by Albert A. Mull in, Huntsville, AL 
(Vol. 24, no. 3, August 1986) 

It is well known that, if ft ̂  4 and the Fibonacci number Fn is prime9 then 
ft is prime. 
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(1) Prove or disprove the complementary result" If n £ 8 and the Fibonacci 
number Fn is the product of two distinct primes then n is either prime or the 
product of two primes, in which case at least one prime factor of Fn is Fibo-
nacci. 

(2) Define the recursions un+1 = FUn , u1 = FmJ m > 6. Prove or disprove 
that each sequence {un} represents only finitely many primes and finitely many 
products of two distinct primes. 

Solution by Lawrence Somer, Washington, B.C. 

(1) The result is true. It was proved in both [3] and [4] that Fn is the 
product of two distinct primes only if n = 8 or n is of the form p, 2p, or p2, 
where p is an odd prime. It is well known that if m\n9 then Fm \Fn . A prime p 
is called a primitive divisor of Fn if p\Fn9 but p|Fn for 0 < m < n. In [1], 
R. Carmichael proved that Fn has a primitive prime divisor for every n except 
n - 1, 2, 6, or 12. If n = 1, 2, 69 or 12, then Fn is not the product of two 
distinct primes. It thus follows that If n > 6 and n Is of the form 2p or p 2

5 

then Fn has at least two distinct prime divisors—one of the primitive prime 
divisors of Fp and one of the primitive prime divisors of Fn . Clearly, every 
prime divisor of Fp is a primitive divisor. Thus, if Fn is the product of two 
distinct primes and n - 2p or n = p2, then Fp must be a prime divisor of Fn. 
The result now follows. 

(2) As stated by the proposer, if n ^ 4, then Fn can be prime only if n is 
prime. Thus., it is conceivable that if p > 6, p is a prime, and u1 = Fp is 
primes then un is prime for all ns and {un} represents Infinitely many primes. 
However, if un is not prime for some n9 then we claim that, for any fixed posi-
tive integer k9 there exist only finitely many positive integers n such that un 
has exactly k distinct prime divisors. In particular, {un} represents only 
finitely many products of two distinct primes no matter what u1 Is. In fact, 
the following theorem and corollary are true. 

Theorem: Let {un} be defined by un+1 = FUn , u± = Fm9 m > 6. Let d(un) denote 
the number of distinct prime divisors of un, then d(un+1) > d(un). If d(un) = 
v > 3, then 

d(un + 1) > 2r - 3 > d(un). 

If <5(w„) = 2 and If It Is not the case that both n = 1 and un = F9 = 3 4 , then 
d(un + 1) > 3 > d(w„). If wn - F9 = 34, then n = 1 and d(un + i) = 2 = d(un) « If 
d(un) = 1 and wn = ps, where p Is an odd prime and s > 1, then 6̂ (wn + 1) >s. If 
d(un) = 1 and wn = 2s

 9 where s > 2S then d(un + 1) ^ s - 1. 

Corollary: Let t be the least positive Integer, if it exists, such that ut is 
not a prime. Then {un} represents exactly t - I primes and at most t Integers 
that are prime powers. If such a positive Integer t does not exist, then {un} 
represents infinitely many primes and only primes. For a fixed integer k > 3, 
{un} represents at most one Integer having exactly k distinct prime divisors. 
If u± + 34 = F9, then {un} represents at most one Integer having exactly two 
prime divisors. If u1 = 34 = F9, then {un} represents exactly two Integers 
having exactly two distinct prime divisors. 

Proof of the Theorem: By Carmichael fs result in [2] stated earlier, Fn has a 
primitive prime divisor If n i 1, 2, 6, or 12. Suppose d(un) = v > 3. Then un 
has 2r distinct divisors that are products of distinct primes or equal to 1. 
If k Is a divisor of un which Is the product of distinct primes and if k ^ 1, 
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2, or 6, then Fk\FUn and Fk has at least one primitive prime divisor. It thus 
follows that d(un+1) ^ 2r - 3 > d(un) = r. 

Now suppose d(un) = 2 and wn ̂  F9 = 3 4 . We claim that d(un+1) > 3. First 
we prove that if d(un) = 2, un $ F9 = 349 and w^ f F12 ~ 144, then l\un. If 
2|Fj, then it is known that 3|j. If j = 3i, where i > 5, then Fj is divisible 
by F3, F^ , and F3^ , each of which has a primitive prime divisor. Thus, F3i , 
i > 5, has at least three distinct prime divisors. The result now follows be-
cause F3 and F6 do not have exactly two distinct prime divisors. Thus, un has 
exactly two distinct odd prime divisors p and q. Then un+1 is divisible by Fp , 
Fq, and Fpq , each of which has a primitive prime divisor. Hence, we have 

d(un+1) > 3 > d(un) = 2. 

If un = F12 = 144, then un + 1 = Fli+if. By the table given in [1, p. 8], d(Flhh) 
= 11, and the claim follows. Now suppose un - F9 = 34. Since 9 is not a Fibo-
nacci number, we must have that n = 1. By the table given in [19 p. 2], 

un+i = F34 =5702887 = 1597.3571, 

and d(un+1) = 2 = d(un). 

Now consider the case in which d(un) = 1 and un = ps, where p is an odd 
prime and s > 1. Then wn + 1 is divisible by Fp^ for 1 < i < s, each of which 
has a primitive prime divisor. Hence, d(un+1) ^ s. Finally, suppose d(un) = 1 
and un = 2s, where s > 2. Then u n + 1 is divisible by F ± for 2 < i < s, each of 
which has a primitive prime divisor. Consequently, 

d(un+1) > s - 1. n 

Proof of the Corollary: This follows immediately from the proof of the Theorem 
above upon noting that un+1 > un and that Fn is a power of 2 only in the cases 
F3 = 2 and F6 = 8 = 23. m 
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Just a Game 

H-k02 Proposed by Piero Filipponi, Rome, Italy 
(Vol. 24, no. 3, August 1986) 

A MATRIX GAME (from the Italian TV serial Pentathlon). 

For complete details of this very interesting problem, see pages 283-84 of 
The Fibonacci Quarterly 24, no. 3 (August 1986). 
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Solution by Paul S. Bruckman, Fair Oaks, CA 

Given n > 1, let \ n denote the set of 1 x n vectors (015 62, . .., 9„)s \f 

the set of n x 1 vectors (6i, 62, . .., On) f with 6̂  = 0 or 1 (chosen randomly)? 
Let Tn = Xn = Xn

n denote the set of all nxn matrices with entries either 0 or 
1. Let l n = (0, 0, ..., 0)GXn' ^n E (1. 1. ...» l)eXn5 likewise5 .6^ = (0, 0, 
•••» 0)'exi._£i = (1. 1, ...» D'exI- Let pn E {fin, £ n } , p^ = {££, e $; an = 
{An> AnJ » Tn = {§.«> -§L ?J * ^ e saY a matrix contains a vector if the vector is 
either a row or a column, as appropriate, of the matrix. 

Let An denote the subset of Tn containing at least one element of pn\jQr; 
Let Bn denote the subset of Tn containing at least one element of p ; 
Let Cn denote the subset of Tn containing at least one element of p r

n ; 
Let Dn denote the subset of Tn containing at least one element of p^, pf. 

We first observe that \Tn\ = 2"2» Moreover, 

Pn = \An\/\Tn\ = 2-nZ\An\. (1) 

By symmetry5 we see that \Bn\ = \Cn \ . Also, \An\ = \Bn\ + |C n \ - \Bn\9 so 

\An\ = 2\Bn\ - \Dn\. (2) 

To evaluate |#n|, we note that B* is the subset of Tn containing no elements 
of pn. Since each such (row) element of B* may be chosen in 2n - 2 ways, thus, 
\B*\ = (2n- 2 ) n

0 Hence, 

\Bn\ = 2nl - (2n- 2 ) n
e (3) 

To evaluate |#n|, we first partition Dn into the two (disjoint) sets Dn' 
and B^p3 defined as follows: Dn

0) is the subset of Tn containing an, D^ is the 
subset of Tn containing Tn» Note that no element of Tn can contain {_6.n9 JLn) or 
{j$/n» £.„}• BY symmetry9 |l^0)| = l^1^. Therefore, 

Kl = 2K}I* <4> 
To evaluate |Z?„ |,-we further partition D^ into the (disjoint) sets £„ & » k = 
1, 2, . .., n, where D^}

k is the subset of Z^0) with at least one 6_n, with 6_̂  in 
the kth column9 but with no S_f

n in any of the preceding columns „ Thus, 

|n(0)| = y |D(0) I /CN 

fc = 1 
Now, D,^0\ is the subset of Tn with at least one 6_n and with first column 

§_f
n; this is'equivalent to the set difference E-Fs where E is the subset of Tn 

with first column _6^, F is the subset of E containing no j5n* We enumerate E by 
considering the rows of any matrix in E. Each such row must have 0 as its first 
element, with the other elements random. This involves 2n~1 choices for each 
such row; hence, \E\ = 2(n~1)n* \F\ is enumerated similarly, except that each 
row of any matrix in F must also not be 6_n» This involves 2n~1 - 1 choices for 
each row of any matrix in F; hence, JFJ = (2n~1 - l)n . Therefore, 

\D«>\\ = 2(n"1)n - U*" 1 - l) n . (6) 

Next, we evaluate \Di0\\ » D^\ is the subset of Tn with at least one _6n, 
with the first column not §_r

n and with second column 6/w. Thus, BUi 2 is equiva-
lent to the set difference G - H, where G is the subset of Tn with at least one 
6 y, and second column 6', H is the subset of G where both first and second col-
~— — i i i (n} i i i 

umns are $_r
n« By symmetry, we see that \G\ = \B^ \ \ . To evaluate |^| , we see 

that H is the set difference J-Ks where J is the subset of Tn with both first 
and second columns 6_?

nJ and K is the subset of J containing no &_n» By similar 
reasoning, \j\ = 2<n-2>«, |z| = (2n~2 - l)n . Hence, |#| = 2<n"2)" - ( 2 n ~ 2 - l ) n , 
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and so 
|£)(°) I = 2^n~V}n - (2 n ~ 1 - l)n - {2(n"2)n - (2n~2~ l)n}. (7) 

A moment's reflection shows us where this general process leads us; first, 
however, we make the following convenient definition: 

^ = 2(n-k)n _ (2*-*- l ) n , k = 0, 1, 2, ..., n. (8) 

We then f ind: \D£\\ = a19 \D^9\\ = a1-a2 = -ka19 \D^\\ = a 1 ~ 2 a 2 + a3 = A2a15 
e t c . ; in gene ra l , we find 

\bn\\ = ( - l ) * " ^ * " 1 ^ , k = 1, 2, . . . , w. (9) 
Therefores by (5), |#(no)| = E ^ 1(-l)k" 1A k~ 1a 1. This expression can be slightly 
simplified as follows: 

t (-Dk~1^-1a1 = E ( - D ^ A ^ U + A)a0 
k=i fe-i 

= E (»l)fe"1Ak"1a0 - E (-DkAka0 = - ( - 1 ) ^ ^ " xa 0 I"*1 = a0 - (-l)nAwa0. 
fc = i fe = i I I 

In terms of the binomial expansion, 

I O "kt (£)C-D*-V dO) 
We may also express \Bn\ in (3) in terms of a19 since we see from (3) that 

\Bn\ = 2n(2("""1)n - ( 2 W " 1 - 1 ) W ) , i.e., 

\Bn\ = 2na1. (11) 

Using (2), (4)5 (10), and (11), we therefore obtain: 

K I = 2 ( 2 " ^ - f c | : i ( f e ) ( - i ) k ' 1 « k ) - (12) 

Finally, from (1), we obtain the desired exact expression: 

Pn =21-2(2"a1 - J ^ Q C - I ^ - X ) , (13) 

where the ak
%s are given by (8). 

After some computations, we obtain the following values from (13): P1 = 1, 
P2 = «875, P3 = 205/256 = .8008, as discovered by the proposer. However, we 
further obtain: Ph = 21,331/32,768 = .6510, P5 = 7,961,061/16,777,216 = .4745, 
P6 = 10,879,771,387/34,559,738,368 = .3166, P7 = .1978, P8 = .1215, P9 = .0680, 
and P1 0 = .0383, all of which values are different from those published in the 
statement of the problem. 

Nevertheless, the proposer's conjecture is correct, and is easily proved. 
Note, from (13), that Pn < 21'n22na1. Also, 

a± = 2nl~n - (2n~1~» l)n = 2n2~n{l - (1 - 21~n)n] 

= 2n2~n{l - 1 + n- 21"" - •••} < W 2"2-2 n + 1. 

Hence, Pn < 2
1+n~nl * n • 2 n 2 " 2 n + 1

s or 

P n < ^ . (14) 

Clearly, 11m 4n • 2""* = 0, Hence, 11m Pn = 0. Q.E.D. 
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