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PROBLEMS PROPOSED IN THIS ISSUE 

H-423 Proposed by Stanley Rabinowitz, Littleton, MA 

Prove that each root of the equation 

F xn + F _u1^n_1 + F ^x71'1 + . .. + F0 ,x + F0 = 0 
n n+l n + 2 2n -1 2.n 

has absolute value near cj), the golden ratio. 

H-424 Proposed by Piero Filipponi & Adina Di Porto, Rome, Italy 

Let Fn and Pn denote the Fibonacci and Pell numbers, respectively. 

Prove that, if Fp is a prime (p > 3), then either Fp\PH or F \PH+l, where 
H = (Fp - l)/2. 

SOLUTIONS 

Editorial Notes: Andrzej Makowski has pointed out that H-287 was published in 
the American Mathematical Monthly as Problem S 3 [1979, 55] 
and the solution appeared in [1980, 136]. 

Chris Long solved H-211 by using a Lemma of Wolstenholme 
[Quart. Jour. Math. 5(1862), 35~39] . 

Brush the Dust Off 

H-152 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, 
CA (deceased) (Vol. 7, no. 1, February 1969) 

Let m denote a positive integer and Fn the nth Fibonacci number. Further, 
let {ck}, k = 1 to °°, be the sequence defined by 

{ck} = {(Fn)m, (Fn)m, ..., (Fn)m}; m, k = 1 to «,, 

2 m _ 1 copies 
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Prove that {cy} is complete; i.e., show that every positive integer n has at 
least one representation of the form 

P 

k = l K K 

where p is a positive integer and 

ai = 0 or 1 if k = 1, 2, ..., p - 1, 
ap = 1. 

Solution by Chris Long, student, Rutgers University, New Brunswick, NJ 

First some preliminaries. 

Lemma 1: Let {x^}, i = 1 to °°, be a nondecreasing sequence of positive inte-
gers with xl = 1. Then {x^} is complete if and only if 

P 
x
P+l = l + Z Xi> for P = x> 2> ••• • 

l 

Proof: This is proven in J. L. Brown, Jr., "Note on Complete Sequences of 
Integers," Amer. Math. Monthly 67 (1960):557-560. 

Lemma 2: (/J7*̂  _x + fn(fn.{)m ^ (fn-0m+l + (/Jm+1 for a 1 1 m, n* I. 

Proof: Since for m9 n ^ I, 

(fn-Oa(fn ~ fn-0 S </» > * </„ "/„-!> ~» (/JX-1 + /„tf»-l>m 
^ (/n-1)m+1 + (fn)m+1-

Lemma 3 : C f n + 1 ) m ^ 2 m " l ( (fn . . 1 ) m + (fn ) n ) f o r a l l m, n * 1 . 

Proof : We have fn+l i fn_1 + fn f o r a l l n i l . I f 

(/n+1)ra s 2n-1((/n.1)m + (/„)«), 

then, since /n+1 = f„_! + /„ and fn+1 > 0 for all n i l , 

(fn+1)mfn+l S 2--l((.fn.1)m+1 + (fn)m+1 + </B)V„-i + 4(/n_i)m) 

i 2m((f„.1)m+l + (fn)m+l) by Lemma 2. 

Hence, by induction, (fn+1)m S 2m-1((/n_1)m + (/n)m.) for all m, n i 1. 

Since Cj = 1, {cj.} is complete if c/c+i S 1 + fi; + ••• + Cj for all fc S 1. 
Now, if 2 S a £ 2m~1, then we have, for k = n2m~l + a, that 

Gk - (4+l)m s ! + 2ra-1((/1)m + ••• +. (fn)m) + (a - D( / n + 1 ) m 

= I + o1 + ••• + ck; 

therefore, we need only prove the case for a = 1, and this is equivalent to 

{fn+l)m S 1 + 2m-1((/1)m + ... + (fn)m). 
But by Lemma 3, 

(fn+l)m i 2m-1((/n_1)m + (fn)m) S 1 + 2m-1((/0) + ••• + (fn)m) 
= 1 + 2m-1((/1)m + ••• + (fn)m)- Q.E.D. 
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At Last 

H-215 Proposed by Ralph Fecke, North Texas State University, Denton, TX 
(Vol. 11, no. 2, April 1973) 

a. Prove 

£ 2% = 0 (mod 5) 
i-n 

for all positive integers n; Pi is the ith term of the Pell sequence, 

Pi = 1. P2 = 2> Pn+1 = 2Pn + Pn-l (« ^ 2) . 

b. Prove 2nLn E 2 (mod 10) for all positive integers n; Ln is the n th term of 
the Lucas sequence. 

Solution by Chris Long, student, Rutgers University, New Brunswick; NJ 

a. Note that 2Pl + 4P2 + 8P3 = 4P2 + 8P3 + 16P4 = 0 (mod 5) and that 
2 i + 2p

i + 2
 + 2 i + lpi + l +

 l l p i = ^(2i + lpi+i + 2'P̂  + 2*-^^) 

+ 4 ( 2 ^ + 2i~lPi_l + 2i~2Pi_2); 

hence, by inductions 

Zi + 2pi + 2
 + 2 i + lpi + l + l i p i = °  (mod 5> 

for all positive integers n. 

b. We have that 2L1 = 4P2 = 2 (mod 10) and that 

2n + 2P n + 2 = 2(2*+1Pn+1 + 2(2nLn)); 

hence, by induction, 

2nLn = 2 (mod 10) 

for all positive integers n. 

Middle Aged 

H-306 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA 
(deceased) (Vol. 17, no. 3, October 1979) 

(a) Prove that the system 5, 

a + b = Fp9 b + c = Fq, c + a = Fr, 
cannot be solved in positive integers if Fp9 Fq , Fr, are positive Fibonacci 
numbers. 

(b) Likewise, show that the system T, 

a + b = Fps b + o = Fq, c + d = Fr , d + e = F8, e + a = Ft , 

has no solution under the same conditions, 

(c) Show that if Pp is replaced by any positive non-Fibonacci integer, then S 
and T have solutions. 

If possible, find necessary and sufficient conditions for the system U9 
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a + b = Fp9 b + e = Fq , e + d = Fr, d + a = Fs , 

to be solvable in positive integers. 

Solution by Chris Long, student, Rutgers University, New Brunswick, NJ 

It is unclear whether the F's are meant to be distinct or not; I will con-
sider both possibilities in the following. 

(a) Assume WLOG that Fq is the maximum of Fp, Fq , Fr. We have that 2a = Fp -
Fq + Fr, If the Ffs are distinct, we then have that Fq ^ Fp + Fr; hence, 
2a ^ 0. Therefore, 5 cannot be solved in positive integers if the F?s are 
distinct. If the Ffs are not distinct, then this is false; e.g., take a = 
b = a = 1. 

(b) This is similar to (a). Assume that Fq is the maximum of the F!s. We have 
that 

2a = Fp - Fq + Fr - Fs + Ft and 2d = Fs - Ft + Fp - Fq + Fr; 

if the FTs are distinct, then Fq ^ Fp + Fr, which gives us that 

2a £ Ft - Fs and 2 a7 ̂  Fs - Ft . 

Adding gives the contradiction that 2(a + d) ^ 0; therefore, T cannot be 
solved in positive integers if the Ffs are distinct. Again, if the F's are 
not distinct, this is false; e.g., take a = b = o=:d = e=z 1. 

(c) This is false for both (a) and (b). Indeed, for system S replace Fp with 
4 and let Fq = 1 and Fr = 2; these values imply that 2a = 5. Similarly, 
for system T replace Fp with 4 and let Fq = 1, Fr = 2, Fs = 3, and Ft = 5; 
these values imply that 2a = 7. 

For system [/, I claim that it is solvable in positive integers if and only 
if Fp + Fr = Fq + Fe and Fp, Fq, Fs, Ft ^ 2. Indeed, the necessity of the 
statement is obvious. For sufficiency, note that all possible solutions 
must be of the form 

(a, i, c, d) = (£, Fp + t , Fr - Fs + t, Fs - t); 

hence, all solutions with a, i, o» d positive integers are given by 

{(£, Fp + t9 Fr - Fs + t, Fs - t)|max(l, Fs - Fv + 1) < t ^ Fs - 1}. 

In particular, £ = Fs - 1 yields a solution under the given conditions. 
It is also interesting to note that the F's cannot all be distinct, as 
this would imply that one of the F?s was S 0. 

Close Ranks 

H-403 Proposed by Paul S. Bruckman, Fair Oaks, CA 
(Vol. 24, no. 4, November 1986) 

Given p, q real with p ^ -1 - 2qk9 k = 0, 1.,. 2, ..., find a closed form ex-
pression for the continued fraction 

e ( p . <?) = P + g + ^ + p + 3<y — • (i) 
p + 4q + ••• 
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HINT: Consider the Confluent Hypevgeometvic (or Kummev) function defined as 
follows: 

M(a5 b, z) = E 7^T"S|T^ b * °> ~l> "2=» ••• • (2) 
n = 0 ^ ^ n 

2 
3 + 4 

n! 5 

3 NOTE: 6(1, 1) = 1 + Q _̂ 4 , which was Problem H-394* 

Solution by C. Georghiou, University of Patras, Greece 

Take the confluent hypergeometric differential equation 

zwft + (b ~ z)wr - aw = 0 (*) 

Then5 for a * 0, -1, -2, . .. and £> * 0, -1, -2, . . . , we have that 

w b - z z/a 
+ wf a w?/w!t 

By differentiating (*), we get 

wf b + 1 - z z/(a + 1) 
+ w!? a + 1 ' w"/w '" 

and by repeated differentiation of (*), we get the continued fraction 

_ = / ( 3 ) = . . - ^ _ _ 

z + 
b + 1 - z z/(a + 1) 

a + 1 2> + 2 - s 
+ ... 

a + 2 
From the theory of continued fractions, we know that 

^°  + 2?! + b2 + £3 + ""
 bQ + ^i^i + C22>2 + <?3£3 + "* (**j 

where cn * 0, and setting c± = 19 c2 - a + l» ,..5 cn = a + n - 1, ...s we get 

f(z) = •• • • • (***; 
J Z ? - s + Z ? + l - s + 2 ? + 2 - s + 

Now it is shown in W. B. Jones & W„ J, Thron, "Continued Fractions/1 in G.-C. 
Rota, ed*, Encyclopedia of Mathematics and Its Applications, Addison-Wesley, 
19805 pp. 276-282, that the above continued fraction converges to the meromor™ 
phic function 

Jy/ N M(a + 1, b + 1, z) 
M(a9 b, z) 

for all complex numbers z and* moreover, the convergence is uniform on every 
compact subset of C which contains no poles of f(z). 

Before we proceed further, we note that the restriction a * 0, -1, -2, 
can be removed by a limiting argument (see also the above-mentioned reference). 

Now, for b * 0, -1, -2, . .., and q * 0 and cn = 2q9 n = 1, 2, 3, .«*, (**) 
and (***) give 
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M(a + 1, 2? + 1, s ) _ 2qb hq2(a + l)z hq2(a + 2)z 
M(a, b, z) 2q(b - z) + 2^(Z? + 1 - z) + 2^(b + 2 - z) + 

F i n a l l y , t a k e a= (p - q)/2q, b = (p + l)/2q, and s = l / 2 q . Then, 

M / p + q p + 1 +_2q 1 
2^ 2<y 2(7/ _ p + 1 _ p + 1 

, p + ff 9 (p 5 q) 
V 2̂ 7 2q 2 q / 

Ml 
p + 3q 

p + 2q + ^- ^ 
^ ^ p + 4<? + 

and the final result is 

e(p, <?) = (p + i) x w 4 w 

V 2q 2q 2qj 
valid for p, q such that q ^ 0 and p * -1 - 2̂ A:, /c = 0, 1, 2, ... . 

Again the restriction p * -1 - 2̂ /c can be removed since it is easy to see 
that 

0(-l - 2qk, q) 
-I - (2k ~ l)q - 1 - (2k - 3)q -1 - q -1 + q 

-1 - 2qk + 
•1 - (2k - 2)q + - 1 - (2k - 4)? + + -1 + 6(-l + 2q, (7) 

For example, for k = 0 (and ^ = 0) , we have 

K-i, 4) = -1 + ZL±JL 
M^^±, 2, J-) 

(V'lf ^) .(-1 + 2q, q) 2q ^ 

and the same result is obtained from the given expression of 0(p, q) by a lim-
iting argument when p •> -1. The same is true for k > 0. 
Finally, when ^ = 0, we have a periodic continued fraction and 

e(p, 0) = p + ^ = p + 
e(p, o) 

p + ... 

which gives for p > 0 or p ^ -4 

6(p, 0) = (p + /p2 + 4p)/2. 

For -4 < p ^ 0, 6(p, 0) diverges. 

Also solved by the proposer. 

• <>•<>• 
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