
CARLITZ FOUR-TUPLES 

MORRIS JACK DeLEON 
Florida Atlantic University, Boca Raton, FL 33431-0991 

(Submitted August 1986) 

Definition 1: We say that (a, b9 o9 d) is a Carlitz four-tuple iff a, b9 o, d 
are integers such that ab = 1 (mod o), ab = 1 (mod d), cd7 = 1 (mod a), and 

cd E 1 (mod b) . For convenience, we shall often write CFT instead of Carlitz 
four-tuple. 

As can easily be verified, <1, 6, 1, 1), (4,24, 5, 5), and <15, 90, 19, 19) 

are Carlitz four-tuples. More generally, for every integer a, (1, a, 1, 1), 

<a, a(a+2), a + 1, a+1), and (a(a+2), a(a+2)(a+3), a(a+3)+l, a(a+3)+l> 

are CFTs. The latter two of these are, in some sense (see the comments between 

Theorem 17 and Proposition 18), generated by (1, a, 1, l) and, in fact, (l, a, 

1, 1) generates not just these two CFTs but infinitely many CFTs. 

Both (4, 16, 7, 7) and (5, 20, 11, 11) are CFTs; more generally, for every 

integer a, (a, 4a, 2a - 1, 2a - 1) is a CFT. 

Carlitz proved in [1] that, if (a, b9 o9 d) is a Carlitz four-tuple, then 
either a = b or c = d. Thus, in the sequel, we shall only consider CFTs of the 

form (a, b9 c9_ a ). 
There are CFTs (a, b9 c9 e) for which a - b and for which a - -b. Some ex-

amples are: 

(a9 a, a+1, a+1); (a, a, a2-l, a 2 - l); (a, -a, a2+l, a2+l). 

Notice also that, if (a, &, c, c) is a CFT, then so are (b, a, e, c)9 {-a9 -b, 
c, e), (a, &, -<?, -c), and (-a, -2>, -e, - o ) . 

Definition 2: The Carlitz four-tuple (a, &, c, e) is -primitive iff there does 

not exist an integer m > 1 such that /-, h , c, c\ is a CFT. 

The CFTs (8, 12, 5, 5) and <30, 45, 199 19) are not primitive; for each of 

these we could choose m = 2. 
The following result shows that CFTs occur in pairs. 

Proposition 3: If (a, b9 c9 a) is a Carlitz four-tuple, then so is 
/ , ab - 1 ab - 1\ 
(a, 2>, — ^ — , — 5 — ) . 
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Proof: Let d = , which is an integer, since ab = I (mod c). Since cd = 

ab - 1 E -1 (mod [a, &]), 

1 E c2d2 = d2 (mod [a, 2?]). 

Since we also have that ab = cd + 1 E 1 (mod d), we see that 

/ , aZ? - 1 ab - l \ {a, b, — , — ) 

is also a CFT. m 

Given a Carlitz four-tuple (a, b9 c9 c) 9 we shall prove, after a lemma, a 

necessary and sufficient condition for this CFT to be primitive. Then, after 

another lemma, we shall prove that a\b for any primitive CFT (a, b, o, c). 

Lemma k: Let (a, b9 c9 c) be a Carlitz four-tuple and let 77? be an integer. We 

have that/—, bm9 c9 c\ is a Carlitz four-tuple iff m divides (a, — r — 1 . 

Proof: First, assume that (—, bm 9 c9 cj is a CFT. Thus, m\a and c2 E 1 (mod 
1 c2 - 1 / c2 - 1 \ 

ifc»77?) . Since m\a and m divides — r - — 9 m divides (a, — T — j . 
.2 

Conversely, assume that m divides ia9 — T - — ) . Thus, — is an integer. 

since (a, 2?, c, c) is a CFT, 

Now, 

— bm = ab - I (mod e) 
m \ J 

and c?2 = 1 (mod a). Hence, c2 - 1 (mod —J. Also, since 777 divides a z - 1 C2 E 

1 (mod bm) . T h e r e f o r e , / —, 2?7?7, c , c \ i s a CFT. / a_ 

Following directly from Lemma 4 is 

Theorem S- Let (a, Z?, es c) be a Carlitz four-tuple. We have that (a, Z?, c9 c) 
I o2 - 1\ is a primitive Carlitz four-tuple iff (a, — r — ) = 1. 

/ c2 - 1 \ 
Lemma 6: If (a, 2?, c, c) is a Carlitz four-tuple, then a divides b\a9 — r — ) . 

c2 - 1 Proof: Let e = — 7 . Since a divides c2 - 1 = £>e and a divides a&, a divides 

(aZ?, Z?e) = Ib I (a, e). 11 

Proposition 7: If (a, Z?, e5 c) is a primitive Carlitz four-tuple, then a\b. 

Proof: By Lemma 6 and Theorem 5, a divides b(a9 — r — j = b. m 

The converse of Proposition 7 is not true. A counterexample is 

<12, 24, 7, 7), 

which is a nonprimitive CFT. 

We shall now prove two propositions. Given a CFT, the first proposition 

will enable us to find the primitive CFT that, in some sense, generates the 
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given CFT. The second proposition does the opposite, i.e. , given a primitive 

CFT, this proposition will enable us to find all CFTs that are generated by the 

given primitive CFT. 

c2-l Proposition 8: If (a, b9 c9 a) is a Carlitz four-tuple and e = — T — 5 then b 
h(a, e), o9 c) 

\ (a, e)' 
is a primitive Carlitz four-tuple. 

Proof: By Lemma 4, (-. r-, b(a9 e) , c9 o) is a CFT. Since 

I a o2 - I \ _ / a e \ _ 
\(a, e)5 M a , e) I \(a, e)? (a, e)/ 

by Theorem 5, /-T-—~y, b(a9 e) 9 o9 o\ is a primitive CFT. m 

The converse of this result is false. For example, choose a - 75, b = 18, 
e2- 1 and a = 19. Thus, e = , = 20 and (a, e) =5. Now, 

-, M a , e)9 c, a) = <15, 90, 19, 19) 
\(a, e): 

is a primitive CFT but <a, M e, c) = <75, 18, 19, 19) is not a CFT. 

Proposition 3: Let (a> M c, c) be a primitive Carlitz four-tuple. We have 

that (aj 9 —, c9 c\ is a Carlitz four-tuple iff j \ 
^ d ' I 

Proof: First, assume that (aj 9 4, c, c\ is a CFT. By Lemma 6, Theorem 5, and 

without loss of generality, assuming j > 0, we see that aj divides 

b( . c1 - l\ b( . j(c2 - 1)\ w e2 - 1\ , 

Conversely, assume that aj\b. First, notice that 

aj — = ab E 1 (mod c) . 
V 

Since we have that o2 = 1 (mod b) , aj\b9 and -̂  

1 (mod aj) and c2 = 1 (mod —J. 

The next two theorems (Theorems 10 and 13) consider the cojnection between 

a CFT (a, b9 o9 a) and the equation ab + o2 - 1 = 2?c/c. 

Theorem 10: Let a, b9 a be integers. We have that (a, M <?, c) is a Carlitz 

four-tuple iff there is an integer k such that a\bk and ab + c2 - I = bok. 

Proof: First, assume that (a, b9 o9 c) is a CFT. Thus, fc divides ab + c2 - I 

and <3 divides ab + o2 - 1. Hence, since (b9 o) = 1, there is an integer k such 
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that ab + o2 - 1 = bck. Furthermore, since a divides ab + c2 - 1 = bak and 

(a, c) = 1, a divides bk. 

Conversely, assume that there is an integer k such that a\bk and ab + c2 -

1 = bck. Clearly, ab E 1 (mod c) and o2 E 1 (mod b) * Also, since a divides 

bck - ab = c2 - 1, c2 E 1 (mod a ) . 

The condition a|M in Theorem 10 cannot be deleted. For example, let a = 5, 

b = 8, c = 3, and fc = 2. Now 

a£> + c2 - 1 = 48 = bck, 

but <a, £>, c9 c) = (5, 8, 3, 3) is not a CFT, • 

Lemma 11: If a, b9 c9 and fc are integers such that ab + c2 - 1 = &cfc, then 

fa* r J divides k. 

I c2 - 1 \ £2 - 1 
Proof: Let d = (a, T J. Since a7 divides a H r = efe and (d7, c) = 1, 

d7 divides fc. n 

Proposition 12: Let a, &, c5 and fc be integers. If k\a9 a\bk9 and ab + e2 - 1 

= bck, then (V, M , c5 <?\ is a primitive Carlitz four-tuple and 

Proof: By Theorem 10, (a, b9 cs c) is a CFT. Since k divides both a and ok -
c2 - 1 / c2 - 1\ 

a - 9 ^ divides la, JT ). This implies, by Lemma 11, that 

By Proposition 8, (TTTT* b\k\ 9 cs c\ is a primitive CFT. Hence, ̂ 77, bk9 c9 c\ 

is a primitive CFT. 11 

The converse of this result is false. For example, choose a = 75, b = 18, 

c = 19, and fc = 5. 

As a special case of Proposition 12, we have 

Theorem 13- Let a, Z?5 c be integers. If a\b and a& + £2 - 1 = be, then both 

(a, J>, (5, c) and (a, 2?, b~c9 b - c) are primitive Carlitz four-tuples, and if 

a|i and a2? + £2 - 1 = -Z?c, then both (a, Z?5 <?, <?) and (a, &s H e , & + c ) are 

primitive Carlitz four-tuples. 

Proof: We shall just prove this result for ab + c2 » 1 = -&£; the proof for 

ab + c2 - 1 -be is similar. Since ab + c2 - 1 = -&<? and 

ab + (b + e)2 ~ I = ab + c2 - 1 + b2 + 2be = b(b + c), 
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by Proposition 12, (-a, -b 9 o9 o) and (a9 b9 b + o9 b+o) are primitive CFTs. 

Since {-a9 -b, o9 o) is a primitive CFT, so is (a, b9 o9 c). B 

The condition a\b cannot be deleted in Theorem 13. For example, for a = 7, 

b = 30, and o = 11, we see that 

ab + o2 - 1 = 330 = bo, 

but (a, b9 o9 c) = <7, 30, 11, ll) is not even a CFT. 

Corollary 14: If a and J> are integers greater than 1 such that a\b and b2 -

kab + 4 is a perfect square, then there is an integer o such that (a, b9 c9 c) 

is a primitive Carlitz four-tuple and 1 < o < -«. 

D ^ -rr -1 „ b - vb2 - kab + 4 , . . T - . - U . . ^ ^ i . . Proof: If we let e = , then it can easily be shown that ab + 

c2 - 1 = bo. Therefore, by Theorem 13, (a, Z?, c, o) is a primitive CFT. Also 

1 < a < |. m 

In the preceding corollary, we do need a\b; this is shown by considering 

a - 1 and b - 30. For assume there is an integer o such that (a, b9 c9 o) is 

a CFT. Thus, by Theorem 10, there is an integer k such that 

7(30) + o2 - 1 = 30ek. 

This implies that o \ 209, so c = 11 or c = 19. Neither of these is possible, 

since we must have o2 E 1 (mod 7). 

Using the following lemma, we shall find a connection between a diophantine 

equation and primitive CFTs. 

Lemma 15- For a9 b9 o9 q complex numbers with q = b/a9 we have that 

ab + c1 - 1 = be 
iff 

(b - 2o)2 - (q2 - kq)a2 = 4. 

Proof: Since b = aq, this result follows from the identity 

(Jb - 2e)2 - (q2 - hq)a2 = b2 - kbo + ko2 - (qa)2 + ha(qa) 
= b2 - kbo + ho2 - b2 + kab = h(ab + c2 - bo). 

Theorem 16: If q9 u9 v are integers such that u2 - (q2 - hq)v2 = 4, then both 

/ qv - u qv - u\ n / qv + u qv + U\ 
\v9 qv 9 — - — , -1—£—) and (v 9 qv , —^—, -1—2—) 

are primitive Carlitz four-tuples. 
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Proof: Let a = v , b = qv, and c = ^ U. Thus, a | Z? and 

(6 - 2c)2 - (q2 - kq)a2 = u2 - (q2 - 4a)z;2 = 4. 

Therefore, by Lemma 15 and Theorem 139 the proof is complete, m 

As we saw in the preceding theorem, there is a strong connection between 

primitive CFTs and the diophantine equation 

u2 - (q2 - kq)v2 = 4. 

For this reason, we shall now consider the diophantine equation 

u2 - Dv2 = 4, (1) 

where D is a natural number that is not a perfect square. Our discussion will 

be based on work by Trygve Nagell [2, pp. 3-4]. 

If u = u* and v = v* are integers which satisfy (1), then we say, for sim-

plicity, that the number u* + v is a solution of (1). From among all solu-

tions in positive integers to (1), there is a solution in whch both u and v 

have their least positive values; this solution is called the fundamental solu-

tion of (1). The following theorem [2, Theorem 1] states that from the funda-

mental solution of (1), one can generate all solutions in positive integers to 

(1). 

Theorem 17- We have that u + vvD is a solution in positive integers to (1) iff 

there is a positive integer n such that 

•|(w + vS) = \^(u1 + v1 D)\n , 

where u± + V 1^/5 is the fundamental solution to (1). 

For D = a2 - 4a, we can easily see that (a - 2) + VD is a fundamental solu-

tion to (1). Thus, by Theorem 16, (l, a, 1, 1) is a primitive CFT. In some 

sense, from a trivial solution to (1), we obtained a trivial CFT. It turns out 

though that from this trivial fundamental solution to (1), we can get some dis-

tinctly nontrivial primitive CFTs. 

Using Theorem 17 and doing some calculations, we see that two more solu-

tions to (1) are 

u2 + v/D = (a2 - 4a + 2) + (a - 2)JD 
and 

u3 + V3JD = (a - 2) (a2 - 4a + 1) + (a - 3) (a - 1)A/D, 

where D = a -4a. Using Theorem 16 and, for convenience, replacing a by a + 2, 

we see that u2 + V gives rise to 
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(a, a(a + 2), a + 1, a + 1) and (a, a(a + 2), a2 + a - 1, a2 + a - 1) , 

and w3 + v3V39 with a replaced by a + 3s gives rise to 

(a(a + 2), a(a + 2) (a + 3), a(a + 3) + 1, a(a + 3) + l) 
and 

(a(a + 2), a (a + 2) (a + 3), a(a + 1) (a + 3) - 1, a (a + 1) (a + 3) - 1> . 

Of courses using Theorems 17 and 16, we could continue to get infinitely many 

primitive CFTs from the fundamental solution (a - 2) + vD, where D - a2 - 4a. 

Notice also that, for any integer a, u = 2 and v = a is a solution to (1), 
where Z? = 42 - 4 * 4 = 0. This gives rise to the primitive CFTs 

(a, 4a9 2a - 1, 2a - 1) and (a, 4a, 2a + 1, 2a + 1). 

The preceding discussions gives 

Proposition 18: For all integers a, the following are primitive CFTs: 

(1, a, 1, 1) and (1, a, a - 1, a - 1); 

<a9 4a5 2a - 1, 2a - 1) and (a, 4a, 2a + 1, 2a + 1); 
(a9 a(a + 2), a + 1, a + 1) and (a, a(a + 2), a2 + a - 1, a2 + a - 1); 
<a(a + 2), a(a + 2)(a + 3), a(a + 3)+ 1, a(a + 3)+ l) and 
(a(a + 2), a (a + 2) (a + 3), a (a + 1) (a + 3) - 1, a(a + 1) (a + 3) - 1> . 

The next result relates CFTs to another diophantine equation, 

Proposition 13°. For a, b9 a integers, we have that ab + c2 - 1= be iff 

a2 + o2 + (Z? - c)2 - (b - a) 2 = 2, 

Proof: This result follows from the identity 

a2 + c2 + (fc - c) 2 - (b -a)2 

= a2 + a2 + b2 - 2£c + o2 - b2 + 2a& - a2 

= 2a2? + 2c2 - 2bc = 2(ab •¥ c2 - be) * m 

The following two results concern the relative size of a, b9 and c, where 

(a, 2?, <̂ , <?) is a Carlitz four-tuple* 

Lemma 20: Let ( a , i s c , c ) be a C a r l i t z f o u r - t u p l e . If 0 < a < a < £>, then 
aZ? + a2 - 1 = Z?c» 

Proofs Since 0 < a < o < &, 

0 < a& + c 2 - 1 < bo + Z?<? - 1 < 2bc. 

Furthermore, by Theorem 10, ab + o2 - 1 = bo* • 
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Theorem 21: Let <a, b9 e5 e) be a Carlitz four-tuple. If 0 < a < e < b9 then 

(a, b9 e9 o) is a primitive Carlitz four-tuple* 

Proof: By the preceding lemma, ab + a2 - 1 = be. Thus, 

/ a2 - I\ 
[a* — g j = (a, <? - a) = .(a, c) = 1. 

Thus, by Theorem 5, (a, i, e, c) is a primitive Carlitz four-tuple. n 

Theorem 22: Let a, b9 and e be positive integers such that a f b9 a > 1, and 
e ^ ab ~ 1. The following six conditions are equivalent. 

(i) If, for some integer k9 ab + a2 - 1 = bok and a divides c2 - 1, then 

/c|a. 

(ii) If (a 9 b9 e9 e) is a Carlitz four-tuple, then ab + a2 - 1 = be (a* e) , 
c2 - 1 where e = T- . 

(Ill) If (a3 &5 c, c) is a primitive Carlitz four-tuple, then 

ab + e2 - 1 = be. 
(Iv) If (a» b9 e9 e) is a primitive Carlitz four-tuple, then 

u2 - (q2 - kq)v2 = 4, 

where u = 2? - 2c, v = a, and a = b/a« 
(v) If (a, 2?5 e9 a) is a primitive Carlitz four-tuple, then 

0 < a < e < b* 
(vl) If (a9 b9 e9 e) is a primitive Carlitz four-tuple, then 

b2 - kab + 4 = (2? - 2c)2. 

We see that statements (ii)-(vi) in Theorem 22 are related to Theorem 10 

and also to the converses of Theorems 13, 16, and 21, and Corollary 14, respec-

tively. 

Proof: First, we show that (i), (ii), and (iii) are equivalent. We then show 

that (iii) is equivalent to each of (iv), (v), and (vi). 

Proof that (I) Implies (ill): Assume that (a, b9 e9 e) is a primitive CFT. 

Thus, by Theorem 10, for some integer k9 ab + e2 - 1 = bek« Hence, by (i), we 
e2 - 1 / e2 - 1 \ have k\a. Thus, k divides ek - a = T Hence, k divides fa, g J = 1 

by Theorem 5. Therefore, ab + e2 - 1 = bek = be. 

Proof that (III) implies (II): Assume that (a9 b* e9 e) is a Carlitz four-

tuple. By Propositions, (-T~̂ —T* b(a9 e) , es e\ is a primitive CFT. Thus, by 

(iii) , ab + e2 - 1 = be(a9 e). 

Proof that (II) Implies (I): Assume that a divides e2 - 1 and, for some 

integer k9 ab + e2 - 1 = bek. Since a|&cfc and (a, e) = 1, a|M* Thus, by 
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Theorem 10, (a, b9 o9 o ) is a CFT. Hence, by (ii) , ab + o2 - 1 = be (a, e) . 
Therefore, k = (a, e), so k\a. 

Proof that (iii) and (iv) are equivalent: This follows from Lemma 15. 

Proof that (iil) Implies (v): Assume that (a, b, c9 o) is a primitive CFT. 
Thus, ab + o2 - 1 = bo. 

First, assume o > b. Since e2- > be = ab + o2 - 1, we have the contradic-
tion that I ^ ab. 

Second, assume that a ^ c. Since ab ^ bo - ab + o2 - 1, we have the con-

tradiction that 1 > c2. 

Proof that (v) implies (iii): This follows from Lemma 20. 

Proof that (iii) and (vi) are equivalent: This follows from the identity 

(b - 2o)2-b2 + kab = h(ab + o2 - bo). m 

Based on some computer-genreated data, it seems reasonable to believe that 

Theorem 22(iii) is true. Hence, we make the following conjecture. 

Conjecture 23: The six statements of Theorem 22 are true. 
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