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Taxmaiu is an educational computer game, brought out by the Minnesota Edu-

cational Consortium. Starting from an initial set, which in the standard game 

is 
S± = {1, 2, ..., n}9 

the player chooses successive integers fc , &2, ... . After each choice kj9 kj 

and its divisors in S- are deleted to form S. . The player's score is in-
J j+ I J 

creased by kj and the computer's by the sum of all the deleted proper divisors. 

It is illegal to choose k e S- if k has no proper divisor in Sj. Initially, 

any k except 1 may be chosen in the standard game, since that k has at least 

the proper divisor 1 e S . As play continues, the number of legal choices 

dwindles. Whenever the player has no legal move, the computer scores the sum 

of the remaining elements and the game is over. The objective is to have a 

higher score than the computer at the end. 

Play can be described by listing the integers chosen in the order they were 

picked. For instance, with n = 10, we might play (10,95 8). The monitor would 

show, successively, 

{1, 2, 3,4, 

{3,4,6,7, 

{4,6, 7,8} 

{6,7} 

GAME OVER 

5, 

8, 

6, 7, 

9} 

8, 9, 10} 

YOU 

0, 

10, 

19, 

27, 

27, 

ME 

0 

8 

11 

15 

28. 

We lost. We could have won if we had picked 7 first. The computer would have 

deleted 7 (for us) and 1 (for itself) to give S2 = {2, 3, 45 5, 6, 8, 9, 10}. After 

that we could still have chosen 10, 9, and 8, or better still, 9, 6, 8, and 10. 

In general, we should begin play by choosing the largest prime p < n. Aside 

from our choice, only 1 will be deleted, and it is deleted on any first move. 

However, for large n there are «(l/2)n2 points at stake, and this tactic makes 

at most an n point difference. Let fin) denote the best possible score for the 

player on {1, 2, ..., n). It is natural to conjecture that 
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lim f(n)/(\n2) = C 

exists. If so, and if C > 1/2, then the player can win for all sufficiently 

large n. 

In fact, we have the following theorem. 

Theorem: lim f(n)/(^-n2) = C exists, and \ < C < |- . 
«-• oo / \z / z 4 

From this it follows that the player can win for n sufficiently large. On 

the basis of the proof we give, "sufficiently large" may be very large indeed. 

Yet a little experimentation strongly suggests that in fact the player can win 

for n > 4. Resolving the question of how large n has to be is simple, in prin-

ciple. Suppose our theoretical argument shows f(n) > (1/4) (n2 + n) for n > N. 

We have only to exhibit a winning line of play for all n9 4 ^ n ^ N, to show 

the player wins for any n ^ 4. Unfortunately, the calculations will be lengthy 

unless the theoretical argument is greatly sharpened, reducing N to tractable 

size. (I obtained N = 6,000,000.) 

The idea of the asymptotically winning strategy is to divide and conquer, 

by partitioning the game into subgames playable separately on certain nonstan-

dard initial sets. We select a prime p and let 

D denote {d: if q\d and q is prime, then q ^ p}, 

Av = U q and Bp = II (1 - 1/q). 
q < p ^ q < p 

q prime q prime 

Thus, D3 = {1, 2, 3, 4, 6, 8, 9, 12,16, . . .}, A3 = 6 , and B3 = 1/3. Next, for the 

chosen p, we partition {l, 2, ..., n] into sets 

Nk (n) = {kd: d e Dp and kd < n] 

for k relatively prime to Ap. Thus, with p = 3, {l, 2, ..., 40} partitions as 

{1, 2, 3, 4, 6, 8, 9, 12, 16 , 18, 24, 27, 32, 36}, {5, 10, 15, 20, 30, 40} 

{7,14,21,28}, {11,22,33}, {13,26,39}, {17,34}, {19,38} 

and some singletons. Any time we choose a number in N (n), only elements of 

N, (n) are deleted. In general, 
i» p 

However we play on NkiP(n), the sets /n 
Nkr p (n) for kr > k are undisturbed. 

Let fp (x) denote the best score possible for the player if the (nonstan-

dard) initial set Is {d E Dp: 1 < d < x]. Thus, fp(x) Is defined for real x, 

but only changes at elements of Dp; e.g., / (5) = 7, because on [1, 5] H D = 
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{1, 2, 3, 4}, the best play is to take 3 and then 4. Similarly, f (36) = 144, 

taking 3, 4, 27, 18, 36, 24, and 32, starting from [1, 36] O D3. 

The best score possible on NkiP(n) is clearly kfp(n/k) . In view of (1), 

then, if we play on #£« (n) in order of increasing /c, we get 

where E* denotes summation only over k relatively prime to Ap. This score is 

a lower bound for f(n), that is, 

/(n)> £*fc/p(n/k). (2) 

In our example n = 40, the same line of play is applied to {11,22, 33} and 

{13,26, 39}, and from these we score 11/(3) and 13/(3), respectively. In 

general, grouping partition pieces having the same number of elements puts (2) 

into the form 

f(n)> £ f (j) E * k> (3) 

where j f denotes the next element of Dp after j. 

Let us now temporarily put aside rigor and look ahead to the answer. If 

Bp = b/Ap9 then b is an integer, and of any Ap consecutive integers, b of them 
are relatively prime to Ap. Thus, the inner sum in (3) is the sum of, roughly, 

( 71 71 \ 1 (71 71 \ 

~ =T) integers, with an average value of about -A-r + ~ ) . This suggests 
something like 

f{n) > \n*Bp E /P«)(T2 -772V <3'> 

Happily, essentially the same sum as in (3) provides an upper bound for 

fin). 
Suppose we choose p prime and then play a game on {l, 2, . . . , n}. For each 

integer m ̂  n we pick, we note which is the largest proper divisor of m in play 
at the time, and call it t(m). Distinct mfs have distinct t(m)Ts, since t(m) 
is deleted when we pick m. We separate the m we pick into two sets: 

M± = {mi t(m) < n/p} and M2 = {m:° t(m) > n/p}. 

Clearly, M± has fewer than n/p elements, so our score from M1 is less than 

n2lp. To bound from above our score from M , we need a lemma. 

Lemma 1: Suppose k is relatively prime to Ap9 d e Dp, and kd e M2. Then 

k\t(kd). 
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Proof: If k)(t(kd)9 then some prime q > p divides k to a higher power than it 
does t{kd). But then 

kd/t{kd) > q > p, 

in contradiction to the assumption t(kd) > n/p. m 

From Lemma 1, we claim that, for k < n and relatively prime to ip, 

E kd < kfp(n/k). (4) 
d£DP 
kd(=M2 

For consider the sequence of moves in the standard game we just played, but 

restricted to those moves which chose a number of the form kd, with d € Dp and 

kd £ M2. We can map this sequence of moves onto a shadow game played on the 

initial set Dp D {1, 2, . .., [n/&]}. The image of a choice of kd in the real 

game is the choice of d in the shadow game. This d will be a legal move. 

First, k~1t(kd) is a proper divisor of J, since t(kd) was a proper divisor of 

kd, and since, from Lemma 1, k~1t(kd) is an integer. Second, since t(kd) had 

not yet been deleted at the time kd was chosen in the standard game, no multi-

ple kdr of t(kd) had yet been chosen in that game. Thus, in the shadow game, 

no multiple df of k~1t(kd) can yet have been chosen. Therefore, k~1t(kd) must 

still be in play in the shadow game and available as an as yet undeleted proper 

divisor of d. By its definition, the sum of the numbers d so chosen in the 

shadow game is less than or equal to / (ji/k) s and (4) follows on multiplication 

by k. 

Summing (4) over k and using our observation about M1 now gives 

E m < n2/p + Z*kf(n/k)9 (5) 
meM1uM2 k^n 

and since this holds even for best play, we can group /c?s as before and get 

f(n) <n2/p + X f(j) £ * k. (6) 

The analog of (3f) is then 

Now assuming that the sum here is convergent (and it is, as we shall prove 

z \P J < " V 

later), (3') and (6') converge to give 

1 1 \ 
£ • ( 7 ) lim fffi = lim Bp L / (j)f-L - -T^T n + ~ ( l / 2 ) n 2 p ^ PjeDp

JP d \ j t j ' 2 
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The path now splits. We should like to have some notion of the value of C, 

and the demands of rigor must be met. First, let us work on C. 

In principle we have only to pick p large, calculate f (j) for enough terms 

that the "tail" of 

is less than 1/p, and we shall get C to within an error on the order of 1/p. 

The catch is that it is hard to find fp(j) for large j and large p. 

A crude upper bound is not so hard. Any odd numbers rn between n/2 and n 

that are picked have odd t(m) between 1 and n/3. There are, thus, ^ (n + 3)/6 

such m. We can pick in all no more than (l/2)n numbers. The sum of a set of 

< n/2 numbers, all <n and containing at most (n + 3)/6 odd numbers between n/2 

and n, is at most (35/96)n2 + 0(n). 

Thus, C < 35/48 < 3/4. The proof that C > 1/2 is more difficult. 

We choose p = 5 and calculate /5(j) for 1 < j < 36, and then a lower bound 

for /5(j) for 40 < j < 200. It turns out that 

.?/s(j)(4-T77)> 1-9 and B5 = ^ . 
J ̂  200 

Now, C > B5ZDf5U)(j-2 -~)>Js-^>h 

[See the table of f5(j)9 1 to 36, and the lower bound, 40 to 200.] More exten-

sive calculations with p = 7 suggest that in fact C > .56. Before proceeding 

to the problem of justifying (3f) and (6f) (which are not claimed to hold ver-

batim), it would be well to spell out the winning strategy. 

(A) Partition {l, 2, ..., n} into sets of the form Nk 5(n) = {kd: d € D5, 

d < n/k} with k relatively prime to 30. 

(B) Discard Nk 5(n) if n/k > 200. Make no attempt to score from these fe. 

(C) For all k relatively prime to 30 and satisfying (n/200) < k < n, play 

f̂e 5 ̂ n^ a s instructed by the table. Start with smaller values of k and work 

up. 

This will win if n Is large enough. For lesser n, we might do well to go 

ahead and play the Nk An) for small k by ear, starting with k = 1. And, of 

course, first pick the largest prime. 

We now justify (3 ;) and (6 f) and show that 

T,fpU)(\ ~ -777) 

is convergent. The "0" notation will be helpful from this point on. We say 
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<f>i(n) = 0((j)2(n)) if there exists C1 > 0 such that | cf> X (?̂ ) | < C^ (n) for all n . 
A subscript 0P denotes that for each p such a constant Cp exists. 

Table A. f5(n) for n e D5, n < 36 

n 

1 
2 
3 
4 
5 
6 
8 
9 
10 
12 
15 

1 16 
18 
20 
24 
25 
27 
30 
32 
36 

f5M 

0 
2 
3 
7 
9 
15 
19 
28 
33 
44 
54 
62 
80 
96 
112 
128 
155 
177 
193 
219 

Moves 

none 
(2) 
(3) 
(3,4) 
(5,4) 
(5,4,6) j 
(5,6,8) 
(5, 9, 6,8) 
(9, 6, 10,8) 
(5, 9, 10,8, 12) 
(9, 15, 10, 8, 12) 
(9, 15, 10, 12, 16) 
(9, 15, 20, 18, 12, 16) 
(5, 15, 10, 20, 12, 18, 16) 
(9, 15, 10, 18, 20, 16, 24) 
(25, 15, 10, 20, 16, 18, 24) 
(25, 15, 27, 10, 18, 20, 16, 24) 
(2, 25, 15, 27, 18, 30, 20, 16, 24) 
(2, 25,15, 27, 18, 30, 20, 24, 32) 
(3, 4, 25, 27, 18, 36, 24, 20, 30, 32) 

Table B. The lower bound for f5(n) given here comes from first playing the 
odd numbers by hand, then taking 2f (n/2) for our score on the evens. 

n, 

40, 
45, 
48, 
50, 
54, 
60, 
64, 
72, 
75, 
80, 
81, 
90, 
96, 

fs(n) >, 

259, 
292, 
324 
356 
410 
454 
486 
538 
590, 
670 
747, 
813 
877 

Moves 

(25, 15, 27) 
(3, 25, 27,45) 

(5, 27, 45, 75) 

(3, 25, 75, 45, 81) 

H5 

100, 
108, 
120, 
125, 
128, 
135, 
144, 
150, 
160, 
162, 
180, 
192, 
200, 

fs(n) >9 

941 
1049 
1137 
1239, 
1303 
1402, 
1506 
1610 
1770 
1924 
2056 
2184 
2312 

(5, 

(5, 

Moves 

125, 75, 45, 81) 

9, 81, 125, 75, 135) 

Lemma 2: For 0 < x < y, 

E * k = ^Bp(y2 - x2) + 0(A2
p) + 0(z/i4p). 

x<k<y Z 
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Proof: Consider the set Rp of reduced residues mod Ap that are relatively prime 

to Ap. Rp has ApBp elements. For each v e Rp, the arithmetic progression (r, 

r + Ap9 v + 2Ap, . ..) intersects the interval (x, y) in either [(2/ - x)/Ap] or 

J- + [(2/ ~ x)/Ap] points, whose average lies between — (x + y - Ap) and — (x + y + Ap) 

if there are any. Thus, for r e i?p, 

E & = ( ^ ^ + 0W p))(^-p^ + 0(1)) = ̂  "
 x l + 0(2/) + 0 W P ) . (8) 

Now, summing over the ApBp elements of Rp gives 

Jfk = \Bv{y2 - x2) + Q(yAp) + 0(4). • (9) 
x<k<y Z 

Remark: We could get much sharper estimates here from the literature on sieves. 

The quantity estimated in (9) is a weighted count of how many numbers survive 

sifting by the small primes q < p. See [2] for a readable introduction to 

sieves. 

From Lemma 2, and from (3), 

fp (n/k) = -jn Bp X, JP^ / i . 2 f2 I ' v n " . ^ 7- Jp Zkfp(n/k) = ~n2Bp £ / p ( j ) ( - ^ - T M + oJn E 7 / p ( j ) V <10) 

Now, l e t g ( j) be the t o t a l number of po in t s a t s take in Dp D [ 1 , j ] , t ha t i s , 
'p 

£. (j) = E d. (11) 
d<i 

up deDp 

Then fp(j) < gpU) > s o (1° ) holds with gp in place of fp in the error term. 

Now, 

\g (j) < E 1 = ¥(j, p). 
J p d£DP 

d<j 

The counting function ^ (x 9 y) of integers < x composed exclusively of primes 

< y has been the topic of numerous studies over the past fifty years. For an 

elementary but surprisingly good estimate, see [1]. 

Here, because we are not trying to see how small we can take n with a given 

p, a simple estimate will do. 

Lemma 3: ¥(#, p) = 0(log x)p. 

[I02 xT 
-—-—- + 1 possible values for the number of powers of 2 
log 2 J 

[los x"1 -z—^-^r + 1 possibilities for the number of powers of 3, ..., log 3J 

and there are clearly fewer than p primes < p. a 
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Thus , from Lemma 3 , 

E 7 ^ 0 * ) = O(log 
J£Dp J P 

n) p', (12) 

since the sum in (12) has ¥(n, p) terms. Thus, 

i V p ( n f t ) = \n2Bv X fvU)(\ ~ ~ ) + Op (n (log n)2^). (13) 

Our other unfinished business is to show that 

is convergent. For purposes of computation, some estimate of the rate of con-

vergence would also be helpful—how many terms must we take to bring the par-

tial sum to within e of its limit? 

Convergence of 

E "p(j)(i7 - ̂ V) 
EDP

 p VJ2 y2/ j€Dp 

,7< 

is simple. Since f (j) < gp(j) 9 we need only prove 

Dp
 r V J / 

convergent. It is, to l/B 

Proof: X 9p C/ ) (TT - T77) = E ( ^ - T77) E d = E d E ( ^ - T77) 
P d^ up j ^ UP 

d<j j>d 

= E did1 = E i/d = n (i - 1/q)"1 = I/BP. 
deDv d^Dp V^P 

q prime 

Now, for any fixed p, if 

is within e of l/5p, then 

E : / P O- ) (T? - 771) < e- (14) 

But how does n in (14) depend on e and p? Here is an estimate—the technique 

is taken from probabilistic number theory, and we omit the proof. 

, 2 N 

2»p«'(£-;p)-°(i(1-->'MW). 
J ^ X 
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