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1. INTRODUCTION 

In 1953 Solomon Golomb [1] "invented" polyominoes and gave them to the 

world in a talk to the Harvard Mathematics Club. Since then polyominoes have 

given pleasure to tens of thousands, not only through puzzle- and game-type 

activities carried out with them but also as a source of problems amenable to 

mathematical study. 

This year we contrived a creative project in combinatorics for a first-year 

University class. We took the polyominoes and added to them the integers of 

the Fibonacci sequence in a way to be described below. We christened the re-

sulting objects folyominoes and feudominoes, In the notes for the project, we 

wrote: "Thus we have acted as midwife to the birth of twins Folyomino and Feu-

domino, born of two venerable and well-loved parents, viz. Polyomino and Fibo-

nacci-sequence. We offer the twins to you, to rear, to nourish, and to study; 

to play with; to build ideas with; to create mathematics with." 

In this paper we define the objects of study and describe some of their 

properties. The linking of the two fields of mathematics will be seen to have 

given rise to a wealth of new problems, the solution of which can provide the 

basis for a new field of study. This field might be named integer sequence 

geometry. 
2. FOLYOMINOES AND FEUDOMINOES 

Polyominoes dwell amid the integer points of the Cartesian plane (see [1], 

[2]). They are formed by connecting unit squares into shapes, by fglueing1 one 

or more pairs of sides together. Thus, an n-omino is a shape consisting of n 

squares of a large chessboard, connected in such a way that a rook (a chess 

piece) could be moved from any square of it to any other square of it, in one 

or more valid rook moves. On the other hand, a pseudo n-omino has n unit squares 

joined together, but this time connection by fglueing' two vertices is allowed 

as well as by Tglueing1 two sides. In order to traverse all pseudo-polyominoes 
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with a chess piece, we would need to use a king (or a queen) which can make 

diagonal moves as well as row and column moves. 

Examples of both types of n-omino are given below for n = 1, 2, 3, and 4. 

• m R • • • • pi • * 
« 6 9 ft -4 • © • • 4 -ft 9 9 9 

r~m : m * • * i l % . 
6 a A a- i e 4 © a ® 4 • e e 
« 0 9 ©~ 1 m 9 e f f f ® f f 

a is a 1-omino (monomino) 
& is a 2~omino (domino) 
c is a 3-omino (tromino) 
d and e are 4-ominoes (tetromino) 
p is a pseudo-domino 
q is a pseudo-tromino 
p and s are pseudo-tetrominoes 

In order to derive folyominoes from polyominoes, we first place a pair of 

rectangular axes on the lattice and then assign Fibonacci integers to the unit 

squares of the positive quadrant by the following vute: 

Pfr,y) 

The square having the point P(x9 y) at its bottom 
left-hand corner receives the Fibonacci integer fi , 
where % = x + y + 1 and f-+z f-M-, + f-» w i t h 

We may call the result the Fibonacci lattice. 

Now if we construct a polyomino on this lattice, we may add up the integers 

in its cells. Let us call the total of the integers in a polyomino p the value 

V(p) of the polyomino. 

Definitions: 

(i) If the value of a polyomino is a Fibonacci integer, 
the numbered polyomino is a folyomino. 

(ii) If the value of a pseudo-polyomino is a Fibonacci integer, 
the numbered pseudo-polyomino is a feudomino. 

In the following diagram, we show the positive quadrant of the Fibonacci 

lattice, with three example folyominoes marked on it. 

The numbering of the lattice could be extended into the other three quad-

rants. Here, however, all our problems and discoveries will be confined to the 

positive quadrant. 
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m 
144 
89 

MS 
144 

t and so on 5 
34 55 89 144 

WA 
W: 

34 89 144 
ft',3/ft 34 55 89 144 

13 21 34 55 89 144 

m 13 34 55 89 144 
s^m 
M 

34 55 89 144 
V>$0* 13 

mni wA 
89 144 

34 55 89 
mi 2 Id 34 Ki3i > I 3 /K/ ,H 55 

a is a 2-folyomino (total 55 + 89 = 144 = f12) 
b is a 3-feudomino (total 13 + 21 + 55 = 89 = / 1 x) 
o is a 3-folyomino 
d is a 4-feudomino 
e is a 5-folyomino 

Note that a folyomino is also a feudomino (since a king as well as a rook 

can traverse a folyomino); but a feudomino with at least one vertex connection 

cannot also be called a folyomino9 since it cannot be traversed by a rook. 

3. FIRST CLASSIFICATION 

Tables 1 and 2 show all the folyominoes having n = 1, 2, 3, 4, or 5 cells, 

and the feudominoes with n = 1, 2S 33 or 4 cells. 

It should be noted that each folyomino is a representative of an infinite 

class, with any class, the members all have the same shape but differ in their 

values. For example, the 2-folyominoes ] | | form the class 

{ 1 h u 1 2 9 2 3 fi fi< _ } ; 

their values form the set {/i+2« i = 1» 23 . . .}. The same is true of most feu-
i • 2 

dominoes; however, there are some unique feudominoes. One example is i—H > 

we give other examples in Table 2. 

Notes: 

(I) A polyomino has size (i*ees the number of cells in it) and orientation 

in the plane. One can translate it from one part of the plane to another; one 

can rotate it through 9 0 % 180% or 270° ; one can flip it over; and it still 

remains the same polyomino unless one expressly forbids one or the other of 

these -transformations. 

A folyominos on the other hand^ also has a value (i.e., the total of its 

cell values); so, under any of the above transformations its value may change. 

Let us agree that, if the value remains the same after some rotations and/or 
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flippings, then the differently oriented folyominoes are equivalent. Other-

wise, they are inequivalent. (Recall that when we speak of a folyomino, we re-

fer to a representative of an infinite class of folyominoes having the same 

shape and orientation. We define all members of such a class to be equivalent, 

too.) 

n 
1 

2 

3 

TABLE 1. FOLYOMINOES UP TO n = 5 
Folyominoes 

m 
fi If 1*11 

^ 
fi fu,| 

I fi lfi+1 fi*2 
f i , 1 

f i*1 

fi+1 

f i+1 fi+2 

fi+2 

fi+1 

fi+2 

fi+1 

fu i 
fi+1 

Value 

fi 

f i + 2 

f i + 3 

fi+2 f- , 

fi+3 
fi+2 

fi+1 

fi+1 

f,+1 

fi+1 

f l+1 
f i fi+1 fi+2 fi+3 

f i fi+1 

fi+1 

f>+2 

fi+1 
fi 

fi+3 

f i + 1 

f i + 1 fi+2 
fi+1 

f i + 3 
fi+1 
f j 

fi+3 

f,+2 

fi+1 

fi+1 
f i fi+1 

fi+3 
f,+2 

f i + 2 

fj+1 

f ^ 
fi+1 

fi+1 f|+2 

fi+1 

fi+3 

fi+3 

fi+1 

f i f j + 
fi+1 

f j - l 

f i + 5 

(ii) Referring to Table 1, we see that the numbers of inequivalent foly-

ominoes, for n - 1, . .., 5, is as given in the table below. We give also the 

number of different n-polyominoes, for comparison. 

n 

# folyominoes 

# polyominoes 

1 

1 

1 

2 

1 

1 

3 

1 

2 

4 

2 

5 

5 

6 

12 
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TABLE 2. FEUDOMINOES UP TO n = 4 

Feudominoes 
(N.B. The Folyominoes in Table 1 are also Feudominoes) 

Values 

fi fi+i fi+i 

\& 

fi+i 

fi fw 

2,3 (un ique) 

5,5,8 (unique 

fi + 3 

f i + 4 

2 

1 

3 
2 2 3 

13 

r ^ 
1 

3 

1 

8,8,8,8,8,21 (un ique 

1 3 

fi.1 

f,.1 
fi h fi+i 

fi+i fi + 2 

fi+2 

fi+1 
PM 

f i + l l 

f i +1 fi+2 

f i 
f"M 

fi+3 

fi+1 
fi 

f i*3 

fi+1 

fi 

fi+3 

f u 3 | 
f i fi+1 

fi+3 

fi+3 fi+3 

fi+1 

f>+3 

fi fi+1 

fi+3 

fi+5 

fi+1 

f j 

fi+3 

fi+5 

f, + 5 

f j + 6 

) Combining the information of Tables 1 and 2 for n = 19 
aside the unique feudominoes, we get the following table: 

...9 4 5 and 
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n 

# feudominoes 

# p seudo -ominoes 

1 2 3 4 

1 1 3 7 

1 2 5 22 

(iv) Note that usually if a folyomino is not a square, it has one equiva-

lent f olyomino (it is always the case with the f eudominoes in Table 2) ; there 

are 5 exceptions in Table 1, for n = 3 and for n = 5. 

(v) All four 3-cell feudominoes have the same shape; but two different 

values occur. It never happens, among the folyominoes of Table 1, that two 

folyominoes have the same shape and have different values. We ask whether it 

is possible to construct such a pair of folyominoes. 

k. TILING PROBLEMS 

Many of the attractive problems concerning polyominoes involve finding how 

to use certain sets of them in order to fill a given shape exactly. For exam-

ple, there are just 12 different pentominoes, and one problem is to use a set 

of these to fill (i.e., to tile) a 6 x 10 rectangle. It has been shown that 

there are 2339 different ways of doing this (although it is surprisingly diffi-

cult to find even one of these, if one cuts the pentominoes out of cardboard 

and attempts a jig-saw approach to the problem!). 

With folyominoes, the number and types of possible tiling problem multiply, 

because not only can one aim to tile a given shape with them, but also one can 

aim to achieve certain kinds of total value for the shape (e.g., a Fibonacci 

number of a particular kind.) Further, one can aim to produce a sequence of 

shapes that have a given sequence of integer values; we discuss below, in Sec-

tions 5 and 6, two problems of this kind. 

First we discuss problems of tiling (i) squares, (ii) rectangles, and (iii) 

the quarter-plane. 

(i) Tiling an n x n square: Every l x l square is, of course, a folyomino. 

So, too, is every 2 x 2 square, since each has the following arrangement: 

MFui" 

[fi 
fi+2i 
fi+i 

which has value fi+li. It is worth noting here that if we were to create an r-

bonacci lattice, assigning integers from an r-bonacci sequence to the cells, 
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then every Vxr square would have a value that was an integer of the sequence. 

We give a tribonacci example"of this in Section 7. 

Therefore, when n is 1 or 2, the nxn square can be tiled with a single 

folyomino. A natural question to ask is: What is the minimal number, say (J), 

of feudominoes required to tile a given square? We have not yet found a gen-

eral answer to this question; however, the answers for small n may be found by 

inspection. A table, and example minimal tilings for n = 3, 4, 5 follow: 

n 

* 

1 

1 

2 

2 

3 

3 

4 

3 

5 

4 

^^^ 

Hi 

x>^>> 

< ^ 

ill 
\^< 
''Ji+zl 

Using the fact that / + • • • + fQ = fs + 2 ~ fr+is w e easily find the follow-

ing formula for the value of an n x n square which has f. in its least-value 

cell: 
Vnxn ~ Ji+ 2n + 2 ~ ^H + n+ 2 $i+2.° 

To find a solution for cf) for a given value of rz,we have to find a minimal par-

tition of Vnxn using Fibonacci integers as addends. 

(i i) Tiling an ni x n rectangl e: Rather than ask for the minimum number of 

feudominoes required to tile a given shape, as in (i) , we ask what is the 

total number that can be found in the shape, differing in any way. 

Let ^Tm be the total required for an m x n rectangle. It is easy to show 

that §ml = 2w - 1; but we have not yet found a formula for §m2s even when add-

ing the restriction that only folyominoes be counted. 

(til) Tiling the quarter-plane: Referring to the fpositive1, or ?north-eastf, 

portion of the plane only, simple tiling problems are: Tile the quarter-plane 

using only 

(a) even-valued folyominoes; 

(b) odd-valued folyominoes; 

(c) folyominoes with even-subscripted F-values; 

(d) folyominoes with odd-subscripted F-values* 
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We easily found solutions for (a), (b) , and (d); but for (c) our only solu-

tion so far uses a 5-feudomino of value / . The simplest solution for (d) uses 

the 2 x 2 squares, thus: 

T ' i 
- -

- -

- -

1 

- A -
1 
1 

- A -
1 1 

- A -
1 

A ! 

1 
1 
1 

- A i -
1 
1 

-fs~ 
1 
1 

- A -
1 i 
1 

1 
1 
1 

-As-
I 
L 

- A i -
l 
1 

- A -
I I 
1 

- -

- -

- -

Incidentally, this solution with odd-subscripted folyominoes suggests the 

following generalization. Defining a lolyomino to be a polyomino whose value 

is an integer of the Lucas sequence, {L^} = 1, 3, 4, 7, . .., the diagram above 

immediately gives a tiling in terms of even-subscripted lolyominoes. This fol-

lows from the fact that Li - fi_x + f^+1l s o placing two 2 x 2 squares side by 

1; and the required type of quarter-side gives a lolyomino. Thus,\f5 •C 
plane tiling, using 2 x 4 lolyominoes of even-subscript values, is immediately 

evident. 

We turn now to a new kind of tiling problem: Given any integer, does a shape 

(i.e., a combination of cells) exist whose total value equals the integer, and 

which can be tiled by distinct folyominoes? We shall call this the integer 

tiling problem; and, in view of Zeckendorf!s theorem on Fibonacci partitioning 

of the integers, it is easy to arrive at a solution. 

5j ZECKENDORF INTEGER TILINGS 

ZeckendorfTs theorem (see [4] for details) tells us that any integer can 

be partitioned into distinct Fibonacci integers in such a way that there is no 

gap larger than one in the sequence of f. -values used in the partition, with 

all sequences beginning with f = 1 or f = 2. 

We construct the required partitions recursively as follows: Let the par-

tition of 1, namely / , be written as a set P = {f2}; and the partitions of 

2 and 3 be written as P = {/ }, P = {/ , / }, respectively. Then the parti-

tions of the next three (= f ) integers are given by: 

P^P^if,}; P5=P2u{fk}; P 6 = P 3 u { / J . 

The partitions of the next five (= / ) integers are given by taking the union 

of {f } with each of Pn3Po9 P, , P . and P . in turn. For the next eight (= f ) , 
**5 Z d H - b b b 

we take the union {/6} of P^9P59 ..., Pll 9 in turn. And so on. 
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Using the same recurrence procedure, and with each union taking the corre-

sponding cells from the Fibonacci lattice, we can construct shapes which con-

stitute Zeckendorf tilings for each integer. The tilings for n = 1, ..., 7 are 

shown below: 

fu 

A E ] E ] \f*\f*\ E 
1 2 3 4 5 6 7 

Note that, for n = 6, two types of tile arise, viz: 

/,. 

f* 
and f. f> 

Therefore, the answer to the integer tiling problem is: for each integer, 

a Zeckendorf tiling can be constructed. Some integers have more than one type 

of Zeckendorf tiling (Z-tiling). 

Now that we have shown how to construct Zeckendorf integer tilings, we can 

classify the integers according to defined properties of their respective til-

ings. Four interesting properties are: 

(J) = minimal number of folyominoes in a Z-tiling; 
6 = number of diagonal connections in a Z-tiling; 
T = number of types of Z-tiling (different up to rotations and flippings of 

the shape only) of a given integer; 
a = size (i.e., number of cells used) of a Z-tiling. 

Remark: (j), 6, and a are invariant over tiling types, and 6 = 0 for n - f^ - 2 

and f. - 3, O 5. 

We will conclude this section by tabulating the four properties for the Z-

tilings of n - 1, ..., 19. A recurrence formula can be written down to gener-

ate the sequence of O values. 

Table 3- Properties of Z-Tilings 

! n: 

< ( > : 

6: 
T: 

a: 

1 

1 

0 

1 

1 

2 

1 

0 

1 

1 

3 

1 

0 

1 

2 

4 

2 

1 

1 

2 

5 

1 

0 

1 

2 

6 

2 

0 

2 

3 

7 

2 

1 

1 

2 

8 

1 

1 

1 

3 

9 

2 

1 

1 

3 

10 

2 

0 

2 

3 

11 

2 

0 

3 

4 

12 

3 

2 

1 

3 

13 

2 

1 

1 

3 

14 

2 

1 

2 

4 

15 

2 

2 

1 

3 

16 

2 

1 

1 

4 

17 

3 

1 

2 

4 

18 

2 

0 

3 

4 

19 

3 

0 

6 

5 
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6. LATTICE PATHS AND F-CHA1NS 

There is a large literature on the combinatoric theory of paths defined on 

rectangular lattices, and [3] gives a good review of this. It is natural that 

we should now combine the notion of folyomino with that of paths on a Fibonacci 

lattice. 

Definitions: 

(i) A simple path on a Fibonacci lattice is a sequence of distinct cells 

on the lattice, each cell arrived at being adjacent (horizontally, vertically, 

or diagonally) to the previous cell. In chess terms, then, a simple path is a 

king's tour with no repetitions of cells. Let us use the symbols c , c , ..., 
on to describe a simple path starting at c1 and ending at cell cn ; the sequence 

of cell values will be described by u ^ ^2, . . . , vn. The length of a simple 

path is the number of cells in it. The value of the path is 

Vn = t V. . 
i = 1 

The pth partial path is' e , e s .. . , cr , with 1 < r < n, having value 

v* = !>*• 
i = 1 

(ii) An F-chain is a simple path on a Fibonacci lattice such that all its 

partial paths are f eudominoes; that is, all the partial path values F1, V2, ..., 

Vn are Fibonacci integers. 
Counting theF-chains 

We will address the basic problem only, namely that of counting the number 

of F-chains that start at P(i;J j) , in the cell c1 having value ̂ +7-+1> and end 

at Q(r, s) , in the cell cn having value ̂ + s + 1- W e assume that 0 < i ^ r and 
0 < j < s. There are many cases to consider, if one looks at the different 

possible steps from cell to cell; if one does or does not allow unique steps 

[e.g., P(l, 1) to 0(0, 0), involving the value sum / 4- / ]; if one imposes 

boundaries that a path cannot cross. To keep this introduction short, we give 

solutions for just two cases. 

Case 1: Only steps in one of four directions i , ->, ̂ s \ (i.e., N, E, NW, 

SE) are allowed; and all the paths are to lie entirely within the boundary of 

the rectangle determined by the diagonal PQ. 

Solution: We refer to the example in which i = l , j = 2 , r = 5 , and s = 4; 
the inference to the general solution given at the end is elementary. 
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P ( l , 2) 

21 34 55 

13 

T 

3 ( 5 , 4 ) 
The F - c h a i n shown i n t h e d i a g r a m 
h a s p a r t i a l p a t h v a l u e s : 

3 , 8 , 1 3 , 2 1 , 3 4 , 5 5 , 8 9 , 144 

Note that the first two steps of all F-chains from P are forced to be either 

N, SE (giving partial value 3 + 5 + 5 = 13) or E, NW (again giving partial value 

13) . From there on, all paths can proceed by only N or E steps. To get from 

lower 5-cell to the 55-cell, starting with value 13, required two N-steps and 

three E-steps. The number of different ways of doing this is equal to the num-

ber of different arrangements of the symbols NN EE E, which is (9)» Similarly, 

to get from the upper 5-cell to the 55-cell requires one N-step and four E-

steps; the number of ways of doing this is (-, ) • Hence, the total number of F-

chains from P to Q is (̂ ) + Q ) = 15 • 

Generalizing, the number of F-chains from P(i, j) to Q(r9 s) is given by: 

') • O 
/ r + s - i - j - l \ / r + s - i - j 

\ s - j - 1 ' ^ s -j 

where m = (r + s) - (i + j) and n = s-j9m9n'>Q. 

The value of each F-chain is the same, namely / . This is remarkable, 

in that the value is independent of i and j. Thus, we can state the following 

proposition regarding F-chains. 

Proposition: Given Q(r, s), and any other point P(i, j) with 0 < i < v and 0 < 

j < s. All F-chains from P to Q9 with the conditions of Case 1, have the same 

value / r + s + 3 . 

Case 2: Only steps in one of the five directions t, •>, K, \, * (i.e., N, 

E,NW5 SE, NE) are allowed; i ^ 1 and j ^ 1; and no boundary conditions imposed. 

Solution: Allowing for the NE steps (which were not allowed in Case 1) and 

removing boundary conditions leads to many more possibilities for constructing 

F-chains from P(i, j) to Q(rs s) . We give the solution in terms of two coupled 

partial recurrence equations. To explain them, we must first define the fol-

lowing three counting functions. 

(i) A(i, j) is the number of F-chains from P(i9 j) to Q(r9 s), with all 

cells having their usual assigned F-values. 

(ii) B(i, j) is the number of F-chains from P to Q9 with the first cell in 

each chain having value /\ . and the others having their usual values. 
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(iii) C(i, j) is the number of F-chains from P to Q, with the first cell 

having value f. . „ and the others having their usual values. 

Now let us consider the first steps of F-chains from P(i, j) , beginning 

with the first cell-value f. ... There are two possibilities; namely, either 
•'t + j + i r ' J 

a step N leading to cell (i, j + 1) and partial value V2 = ^+7- + 2» o r e l s e a 

step E leading to cell (i + 1, j) , again with partial value F2 = ^ + -+2- We 

can, therefore, write down the equation: 

A(i, j) = £(£, j + 1) + B(i + 1, j) (1) 

Considering F-chains starting from P(i, j) with the first cell having value 

f'+ '+2' w e s e e t n a t three different first steps are possible, the first two be-

ing to cells (i - 1, j + 1) or (£ + 1, j - 1) in which cases the partial values 

V =* f. . are achieved; the third is to cell (£ + 15 J + 1) 5 achieving F = 

fi+j+k- From this information we can write down the equation: 

B(i9 j) = C(i - 1, j + 1) + C{i + 1, j - 1) + B(i + 1, j + 1) (2) 

Finally, we need an equation for C(i, j)- In fact, as explained above in 

Case 1, we can obtain a formula for it, thus, 

CH, J) = Q, (3) 
where 777 = (r + s) - (i + j) and n = s - j. (N.B. It is no accident that this 

number is precisely the same as the total for Case 1, as a moment's reflection 

on the two cases will show.) 

Putting formula (3) into equation (2) gives: 

B(i, j) - B W + 1 . J + ! ) + ( „ ! ! ) + ( n + l) W 

For any given pair of values of (r, s), we can use equation (4) to compute 

a table of values B(i, j); then, finally, using equation (1) with a particular 

pair (i, j) will give us the total A(i9 j ) , which is the object of the study. 

As mentioned earlier, there are many other problems we could pose about F-

chains, the solutions of which, we could seek by means of lattice-path counting 

methods; but we must leave them here. 

7. SUMMARY AND EXTENSIONS 

We have shown how an integer sequence can be assigned to a lattice, and be 

used to give values to polyominoes constructed on the lattice. We chose to use 

the Fibonacci sequence, and studied tiling and path problems related to the 

folyominoes which resulted. 
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Many interesting possibilities suggest themselves for varying and extending 

our studies. We end by briefly indicating some of these. 

Lucas polyominoes (lolyomfnoes) 

We have defined a tolyomino to be a polyomino whose value is a member of 

the Lucas sequence 1, 3S 4, 7, lls 18, ... . Examples of lolyominoes found on 

the Fibonacci lattice are: 

JTI rr 
2 3 3 1 2 | 3 

2 

We can study lolyominoes on the Fibonacci lattice. Likewise, we can use 

the Lucas sequence to produce a Lucas lattice: then we can study folyominoes on 

the Lucas lattice. It is clear that interesting comparisons and dual relations 

between the two systems will abound. 

Integer sequence geometry 

In Section 4(i), we noted a result concerning polyominoes defined on r-
bonacci lattices. To give one example of such a lattice, with r = 3 and the 
sequence 1, 1, 1, 3, 5, 9, 17, 31, ..., we show a portion of the lattice, and a 

few small-size tvolyominoes* 

o 1 

5 

3 

1 

1 

1 

9 

5 

3 

1 

1 

17 

9 

5 

3 
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Note that the 3 x 3 square is a trolyomino, as claimed in 4(i). Note also 

that only odd-sized trolyominoes are possible: this is easily proved true, for 

all single cells have an odd value, and any combination of an even number of 

them would have an even total value. Since all members of this tribonacci se-

quence are odd, an even-valued combination of cells cannot be a trolyomino. 

Finally, we do not have to stay with r-bonacci sequences. Generally, we 

can use the sequence s1$ s29 s3, ... to define an 5-lattice thus: Our defini-

tion of what constitutes an 5-polyomino (see the figure on the following page) 

will depend on whatever property or properties of the sequence {££*} we wish to 
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highlight. Then our discoveries concerning the 5-polyominoes (or solyominoes) 
will constitute results in integer sequence geometry. 
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Generalizations will take place when we compare results on solyominoes 

drawn from a class of ̂ -lattices, defined using a class of related integer se-

quences. An obvious candidate for such studies is a class of F-lattices, using 

the sequences F(a, b) defined by 

F1 = a, F2 = b9 Fi+2 = Fi + 1 + Fi9 (a, b) e Z x Z. 
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