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1. INTRODUCTION 
In this paper, we introduce the notion of Fibonacci word patterns, and use 

these to construct Fibonacci binary sequences. Spaces of the binary sequences 

are defined, and many properties of the spaces and sequences are obtained., 

Suggestions are given for using word patterns to generate other types of number 

sequences. 

2. DEFINITIONS 

Suppose we are given a character set c = {c1, . .., ck} 9 whose members may 
be letters or digits. For example, if k = 2, and c± = 0 , c2 = 1, the character 

set is C = {0, l}, which is the binary set usually denoted by SB. 
Using the characters of c we can, by juxtaposing characters, form wordso 

Then, by juxtaposing words, we can form a pattern of words. A finite pattern 

of words we shall call a sentence. 

Definitions: 

(1) Given two initial words W1 and W2 (called seed words) 9 the follow-
ing recurrence defines an infinite sequence of words: 

K + 2 = KWn + i> n = 1, 2, ... . (1) 

(ii) The juxtaposition of the first i words generated by recurrence (1) 
is called a Fibonacci sentence of length i. 

(Ill) The name Fibonacci word pattern (or word sequence) will be used to 
denote the infinite juxtaposition W1W2WS . . . Ĵ  . .. . We shall often 
use letters A9 B for the seed words, and write F(A9 B) = F(W19 W2) 
for the Fibonacci pattern. With this notation, the first part of 
the pattern is ABABBABABBAB... , with W3 = AB 5 Wh = BAB 9 W5 = ABBAB 9 
and so on. The first four Fibonacci sentences in the pattern are: 

A9 AB9 ABAB9 and ABABBAB. 

(!v) If the character set used for the seed words W± and W2 is 

a= {o, i } 9 

the resulting word pattern is a (0, 1)-sequence which we call a Fi-
bonacci binary pattern (an FBP). 
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3. A FIBONACCI BINARY PATTERN 

The following example of a Fibonacci binary pattern is the one whose dis-

covery motivated our development of a theory of such patterns. 

With 3S - {0, 1} as the character set, and seed words A = 0 and B ~ 10, we 
obtain the pattern: 

F(0, 10) = 0100101001001010010... . 

This particular FBP we have given the symbol oo, after Wythoff. Its inter-

est and importance arise from the following facts. 

(i) The positions of the 0fs in the sequence are 

1, 3, 4,6, 8, 9, 11, 12, 14, 16, 17, 19, ..., 

which is the sequence {an} = {[na]}, where n - 1,2, 3, ..., and where 
a = h(l + \/5) is the golden ratio. 

(ii) The positions of the l!s in the sequence are 

2, 5, 7, 10, 13, 15, 18, 20, 23, ..., 

which is the sequence {bn} = {[na2]}. 

It is well known (see [1], for example) that (a„, bn) are the Wythoff ipaivs, 
much studied in the literature on Fibonacci sequences. 

k. SPACES OF FIBONACCI BINARY PATTERNS (FBPs) 

Any FBP is determined by choosing two binary words W1 and W2 as seeds, and 

applying the recurrence (1), Let 3&'L be the set of all binary words of length 
£ (i.e., words having i characters, each character being either 0 or 1). The 
number of words in ̂ ?% which we shall denote by \g§'L\> is Z1 . Thus, for exam-

ples, ̂ x = ^ = {0, 1} has the two words 0 and 1, and 3S1 = {00, 01, 10, 11} has 

the four words shown. 

Suppose that we choose the seed W1 from SSm, and the second seed W2 from 

£gn. There are 2m x 2n = 2m+n ways of making this double choice; each choice 

determines an FBP, which we denote by F(W±5 W2) . We shall use the symbols^ 
to denote the set of all the possible 2m + n FBPs obtained in this way, and call 

the set the mn-FBP-space. Using set notation, the space is defined thus; 

&mn = {F(W19 W2); W± <E B m , W2 e B n } , (2) 
with 

\&mn\ = 2m + n. (3) 
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5. PROPERTIES OF FBP-SPACES 

The FBP-space with the fewest elements is €^11. We can list this space com-

pletely as follows (we give names to the members in the right-hand column): 

Table 1. The First FBP-Space 

FBP First 13 Characters . . . Name(s) 

F(09 0) 0000000000000 . .. 09 z 
\F(l9 0) 1010010100100 _ a 
F(09 1) 0101101011011 . .. a (complement, of a) 
F(l, 1) 1111111111111 ... 1, u9 ~z 

Note that the space contains the zeros sequence 0 (or z) 9 and its [09 1]-
component, the units sequence 1 (or u) . It is clear that every wn-FBP-space 

will contain 0 and 1, It is also clear that whenever an FBP-space contains an 

element F{A9 B) 9 it also contains the complement F(A9 B)9 since9 if (A9 B) be-
longs to 8§m x ̂ n

s so does (A 9 5 ) . Thus9 i n / 1 1 we find 0 and a9 together with 

their complements 1 and a. 

We now define equality of two FBPs as follows* 

Then F± = F2 if and only if bi = ci Mi. 

Proposition 5.1: Let F19 F2 € &mn\ then F± = F2 iff they have the same seed 

words. 

Proof: Trivial, m 

Thus, there are 2m + n different FBPs in the space Fmn% up to complementa-

tions however, there are 2m+n~1 different FBPs. 

One may note that9 if we define addition of two FBPs by 

F±®F2 = {b, +^}T=i, 

where the binary operation is addition modulus 2 [also known as "exclusive or 

(XOR)" or "ring sum" addition] , the set of elements in any FBP-space form a 

group under 0 . The details of this group for ^ l l are shown in the table and 

graph on the following page. 

All the properties noted so far are possessed by pairs of finite binary 

words of lengths m and n9 respectively. To determine something new, which is 

a property of infinite FBPs and which warrants further study9 we ask whether an 

FBP (other than 0 or 1) occurring in one &mn space also occurs in another &mn 
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space. The answer is "Yes"; every FBP occurs in an infinity of &mn spaces, as 

stated in the following theorem. 

Theorem 5.1: Let F(W1$ W2) e J?mn. Then F(W1, W2) is also a member of spaces 
&vs

9 where 

(r, s) e {(m + n9 m+ In) , (2???+ 3n, 3m + 5ri), ..., (p1^+ q n9 p m + q n).9 ...}, 

with the coefficients {pl9 ql9 p2> q2) being ordered sets of Fibonacci numbers 

of type {/\, f.+ 1, fi+1> f i + 2 } . 

Proof: We shall write A, B for W±9 W2, to avoid subscripts, and begin by prov-
ing a lemma. 

Lemma: F(A> B) = ABF(AB9 BAB), (4) 

This follows immediately from (1)5 since the recurrence generation of words 

produces Ws = AB 9 and then Wh = BAB; thus, F(W39 Wh) is the continuation of 

F{A9 B) after words A and B are juxtaposed. 

We shall now prove that 

F(A9 B) = F(AB9 ABB). (5) 

Using (4) on the left-hand side, we obtain 

F(A» B) = ABF(AB9 BAB) = ABx±9 x2, x39 . .., say; 

and the right-hand side of (5) is 

F(AB9 ABB) = y19 y29 y39 ..., say; where each xi9 y $ e {A9 B]. 

We have to show that y, = A9 y0 = B, y * = #-,..., z/. = x. _,... . To show 

that this is so, we shall replace the two ABs in the x seed words by C and C*, 
respectively, and those in the 2/ seed words by D and D*, respectively. Then 

the expanded sequences are 

a: FC4B, BAB) = F(C, 5C*) = C9 BC*, (75(7*, BC*CBC*, ...; 
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y : F(AB9 ABB) = F(D, D*B) = D9 D*B, ££*£, D*BDD*B, ... . 

Comparison of the elements of these two expansions completes the proof of (5). 

Note now that, if A e J"77, and B € # w , FC43, 4B£) € ̂ 0n + «)0n+2n); a n d ± f w e 

replace AB hy A* and ,455 by Bf, we can use the same proof to show that 

FC45, 455.) = F(A'B'9 A?B!Bf) = F(ABABB9 ABABBABB) e &T\ 

with p = 2m + 3n and s = 3m + 5n. 

Inductive argument establishes that this process can be continued indefi-

nitely, with r and s being Fibonacci integers as claimed. • 

Corol lanes: 

(i) From (5) we see that we can write F(A9 B)=F(5i9 Ti) , where (Si, Tt) 

are obtainable from the following double recurrence system: 

Si+i = SiTi9 with S± = A9 T1 - B, and T- + 1 = Si + 1T^ (6) 

Let us denote the length of a word W (i.e., the number of characters it con-

tains) by H(W) . Then, if I {A) = m and 1(B) = n, by Theorem 5.1 we have 

Thus, since ̂  is repeated infinitely often, the first (f^m + fi+±n) characters 

of the FBP, for i = 1, 2, . .., occur together infinitely often later in the 

sequence. 

Indeed, if we take any subsequence {£> •, i.+ , • ..» bk} of an FBP, and if we 

choose i large enough, the subsequence will be included in S^ * and hence will 

be repeated infinitely often. We call this property of FBPs the strong recur-

rence property. 

(II) Let us define scalar multiplication of a sequence of words thus: If 

a is a scalar, then a(W19 W2, . ..) = W1W1 ... W1W2W2 . * . W2 — , each word being 

taken a times before continuing the sequence with the next word. 

With this notation, repeated application of the lemma in Theorem 5.1 shows 

that 
F(W1S W2) = 2(W39 Ws9 .... W3i9 ...)» (8) 

where W3 = W±W29 etc. 

We may say that any FBP has a scalar factor of 29 with a meaning which is 

clear from (8). 

Now that we know any given FBP occurs in an infinite number of &mn spaces, 

we may ask how many new FBPs can be found in a given space ^mn
 9 new in the 

sense that they have not already occurred in an earlier space. To give meaning 
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to "earlier," we define an ordering of the FBP spaces by the following order-

ing of (m, ri) pairs: 

mx 
1 

2 

3 

• 

1 2 3 

( 1 , 1) -> ( 1 , 2) ( 1 , 3) -* 

( 2 , 1) * ( 2 , 2) * ( 2 , 3) * 
( 3 > 1 } : : 

• 

4 

( 1 , 4) . . . 

Using the symbol < for the order relation, we can now write 

Ĵ 11 < & 12 :21 < &51 < & 22 (9) 

At this point, we will add to the difficulty of determining how many new 

FBPs occur in a given & by defining "new" in a broader sense than "not equal 

to an earlier one." To do this, however, we need to introduce the concept of 

eventual equality. 
Consider the two sequences 

Fi = c1c2c3ch, and Fn <zyzc1c2csch 

where after xyz the sequence for F2 continues exactly as for F1. We shall say 

that F1 and F2 are "eventually equal." In general, we define eventually-equal 

sequences thus: 

Let F19 F2 be any two FBPs; if F1 = B ±F and F2 = B2F, where M s a FBP 
and B19 B2 are binary words (possibly empty), then F1 and F2 are even-
tually equal. We shall write this as 

„ ev „ 
F1 = Fz. 

We now define an equivalence relation for FBPs thus: 

Let F19 F2 be any two FBPs; then F1 = F2 if either Fx = F2 or F± =v Fz. 
Otherwise, F\ f F'2. 

With this notion of equivalence and inequivalence of FBPs, we can sort mem-

bers of FBP spaces into equivalence classes and attempt to count the classes. 

Examples: 

(1) F(l, 0) = 1, 0, 10, 010, 10010, ... 
= 1F(0, 10) 
= 10F(10, 010) etc. (by lemma, Theorem 5.1), 
= F(10, 100) 
= F(10100, 10100100) etc, (by Theorem 5.1); 

therefore, 

F(l, 0) E F(0, 10) E F(10, 010) E ... 
E F(10, 100) E F(10100, 10100100) = ••• . 
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(11) The following table lists the FBPs in the first five spaces, showing 
only the new ones that appear in each space. The [0, 1]-complements 
of the sequences are listed in bar-notation at the end of each space. 
Thus, a = F(l, 0) is described in full, but ô  = F(0, 1) is merely 
listed with all other complements at the end of the &11 section. 

Table 2. Inequivalent FBPs in the First Five Spaces 

717 = I <Smn\ - r>m + n 

Space 3r 
(777, Yl) 

1 (1, 1) 

ii7 = 4 

(1, 2) 

j N = 8 

(2, 1) 

\ N = 8 

(3, 1) 

\N = 16 

(2, 2) 

IN = 16 

Sequence F (A 9 B) 
(first thirteen characters) 

F(0, 0) = 
F(l9 0) = 

0, z = 
"a 

F(l9 00) = 

The other 

F(09 10) £ 

0000000000000 
1010010100100 
1111111111111 

= 1001000010010 

six in this space are 0, 

= a, F(09 01) e= a, and 

their complements. 

F(01, 0) = 
F(ll, 0) = 

Y* £ 
The other 
F(10, 0) = 

F(100, 0) 
F(011, 0) 
F(101, 0) 
F(lll, 0) 
c, n5 y, v 

The other 

F(010S 0) 

F(110, 0) 

F(00, 01) 
F(00, 11) 
F(0l9 10) 
F(0l9 11) 
F(01, 01) 
7T, p, G, T, 

F(00, 10) 

and their 

= 0100100010010 
= 1101100110110 

four in this space are 0, 
= Y* 1» Y-

- 1000010000100 
= 0110011000110 
= 101010100101a 
= 1110111001110 

eight in this space are 0, 
e=v F(001, 0). e=v ?, 

= n, and their complements. 

= 0001000101000 
= 0011001111001 
= 0110011010011 
= 0111011111011 
= 0101010101010 
o19 0, 1 

=V 7TS F(10, 11) =V TS 

complements, 

De 

0, 
a, 
1, 

3* 

Y9 

e9 

c> 
ns 
u* 
v, 

TT, 

p9 

a, 
T, 
G i 

scriptive 
Names 

z9 zero 
alpha 
u, unity 

beta 

gamma 
epsilon 

zeta 
eta 
mu 
nu 

phi 1 
rho 
sigma 
tau 
, first cyclic 
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Notes: 

(i) The first cyclic FBPs are 0, 1, c19 ~c1* We show later that cyclic 
sequences can only occur when m = n. 

(il) The list count of "esentially new" (i.e., up to complementation) 
FBPs that are noncyclic grows by the following increments: 1, 1, 2, 
4, 4, ... as we proceed through the ordered FBP spaces. 

We have not yet found a general formula for these increments. However, we 

have a useful sequence parameter for determining whether or not two FBPs may be 

equivalent, namely the limit density of the words of the binary sequences. We 

describe this parameter next. 

6. THE DENSITY OF AN FBP 

Consider the FBP given by F(A9 B), where A9 B are binary seed words having 
weights (numbers of l?s) ud(A) = a and bd(B) = b9 respectively. Let the lengths 

(numbers of characters) of A9 B be 1(A) = m and 1(B) = n, respectively. Let 

F(A9 B) = W1WZW39 • • • 9 ^i s ••° 9 t*le ^i being the words generated by the Fibonacci 
recurrence. 

Definitions: 
WW.) 

(i) The density of word W^ is 6̂  = .,y . . 

(ii) The density of F(A9 B) is 6 = lim 6̂ , assuming such a limit exists. 
•i, -+• <» 

Theorem 6.1: The density of F(A9 B) is 

5 = 

where 

and 

—; = a 
m + n 

+ da, 

| ( 1 + / 5 ) , c = ~ 

m n 

n 777 + n 

a 

b 

2 2 
.= 777 - U 

n 

m + n 

+ 777n. A = 

Proof: The ith word ^ of the Fibonacci word pattern F(A9 B) contains fi_2 A's 
and fi_Y J3fs; this follows by induction from the recurrence construction of the 

pattern. Therefore, 

Dr and d 

o i . £ a + ba 
6 = lim oi = • , 

-i-̂ oo ^ m + na 
with a the golden ratio %(1 + >/5) . 

240 

Dividing numerator and denominator by /. and taking limits gives 
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Setting - = c + da9 algebra gives 
m + na fo 

a + ba = (em + dri) + a[cn + d(jn + n)]9 

using the fact that a2 = a + 1. 
Equating coefficients of a0 and a1 gives 

a = cm + dn and b = on + dim + ri) * 
Solving for os d by the method of determinants gives the formulas required, m 

Before presenting a table of densities for the first fifteen FBPs, we make 

three remarks and state a proposition on the density of a complement sequence * 

Remarks: 

(i) It is clear that if F± - F2, the densities of F1 and F2 are equal, 

because the limit is applied to W^ 5 and beyond certain points in both sequences 
all characters correspond. 

(il) It might seem a better procedure to define density by 

o)(^) 
6(F) = lim , 

where S^ is the Fibonacci sentence W±W2 . .. W^ . In fact, perhaps surprisingly, 

this limit is the same as the one derived above, which can be proved using the 

identity 
i 

r= 1 

(lii) From the definition of 6 it is evident that 0 < 6(F) < 1 for all F. 

Proposition: Let F E F(A9 B) have density 6(F) = a + da as in Theorem 6.1. 

Then the [0, 1]-complement sequence F = F(A9 B) has density 

6(F) = 1 - 6(F) « {m ~^+Jn -*>« = (i - 0) - da. (10) 
v ' x ' m + na 

Proof: The proof follows immediately from consideration of the composition of 

Wi- • 

We could say that 6(F) is a measure of the density of lfs in the sequence 

F9 and 6(F) is a measure of the density of 0fs in F. (See Table 3.) 

We have used the density parameter in two ways. Firsts when we checked for 

equivalence of two FBPs to produce Table 2. From Remark (i) above we know that 

two FBPs are inequivalent if they have different densities. However, the con-

verse is not true, as can be seen by scanning Table 3; r\ and y have equal den-
sities, as have O and ox« To distinguish between equal density pairs, one must 

compare their patterns of 0fs and lfs. Thus: 
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n = OllOOllOOOllO... and u = 1010101001010... 

are clearly distinct, since the former contains pairs of l!s while the latter 

does not. 

Similarly for a = 01100110... and o1 = 01010101... . 

Table 3- Densities of the First Fifteen FBPs 

Sequence 

0 = F(0, 0) 
a = F(l, 0) 
1 = F(l, 1) 

B = F(l, 00) 

| y = F(01, 0) 

, e = F(ll, 0) 

C = F(100s 0) 

n = F(OII, o) 

y. = F(101, 0) 

V = F(lll, 0) 

IT = F(00, 01) 

p = F(009 11) 

a = F(01, 10) 

T = F(01, 11) 

o1 = F(01, 01) 

m, 

1, 
1, 
1, 

1, 

29 

29 

39 

39 

35 

39 

29 

2, 

2S 

2, 

2, 

n 

1 
1 
1 

2 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

Parameter Values 
a, b o9 d 

0, 
1, 
1, 

1, 

1. 

29 

1, 

29 

25 

39 

09 

o9 

1, 

1, 

1, 

0 
0 
1 

0 

0 

0 

0 

0 

0 

0 

1 

2 

1 

2 

1 

09 

29 

1, 

-3, 

}(3, 

1(3. 

Tl(43 

f(4, 

fr(49 

fr(49 

2 9 

-1, 

1 
2 ' 

o9 
1 
2 s 

0 
-1 
0 

2 

-1) 

"1) 

~1) 

-1) 

-1) 

-1) 

-l 
2 

-1 

0 

1 
2 

0 

6 (to 3 d.p.) 

0 
0.382 
1 

0.236 

0.276 

0.553 

0.217 

0.433 

0.433 

0.650 

0.309 

0.618 

0.5 

0.809 

0.5 

Our second use of 6 was to study the question: "Given an FBP9 how many 

equivalent forms has it for a fixed m9 and for a fixed n (we have already seen 
that it has an infinite number of equivalent forms when m and n are allowed to 
vary)?'1. Again, we have no general answer to this question,, but examining the 

density of an FBP provides a useful start. We give one example. 

Example: Find all the equivalents of a = F(l, 0) in spaces ^mn
9 for 1 < m < 29 

1 < n < 4. 
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Solution: The parameters of a and 6 = 0.382 with Qn9 ft) = (1, 1), and (a, b) = 

(1, 0); therefore, any other FBP is a candidate for equivalence if 

0.382 = — l — = a + ha . 
1 + a m + na 

Equating coefficients of a0 and a1 gives conditions for a and b as follows: 

a = 2m - n \ 

b ~ m - n 
with 0 < ms 0 < n. (11) 

Thus 9 feasible solutions for (77?5 ft) are the lattice points on and between 

lines m - n and m For fixed m9 the values for n are #z, m + 1, . .., 2m. 

To solve our problem, we need only look at the following (777, ft)-points: 

(1, 1), (1, 2), (2, 2), (2, 3), and (2, 4). 

From (11) we compute the corresponding (a, b)-values; then we can write out 

all possible FBPs having the same density as a. Finally, we can check these 

for equivalences. Table 4 shows the FBPs with 6 = 6(a). 

Table 4. The FBPs with Density Equal to 6(a) = 0.382 

1 (m9 ft) 

! 1, l 
1, 2 

2S 2 
29 3 

2S 4 

Parameter 
a ~ 2m 

1 
0 

2 
1 

0 

Values 
- ft b = ft - m 

0 
1 

0 
1 

2 

Fibonacci Binary 
Patterns (FBPs) j 

F(l, 0) = a 
F(Q9 10), F(0, 01) | 

(both are = a) 

F(ll, 00) = 2a 
F(10, 100), F(01, 100) 
F(10, 010), F(01, 010) 
F(10, 001), F(01, 001) 
F(00, 1100), F(00, 0110) 
F(00, 0011), F(00, 1001) 
F(00, 1010), F(00, 0101) 

Combinatoric Formula: The total number of FBPs with density 6(a) is given by 

the formula 
m* 2m m* 2m 

w?i Sm^rn - ftXft - m) ^ n ? r (2m - n)l(n - m) I 5 (12) 

where m* is a given upper limit for m, and [n]m is the falling factorial 

ft (ft - 1) e * °  (ft - m + 1). 

Proof: We obtained the limits for m and n above. The binomial coefficients 

count the numbers of ways in which the a lTs and b lfs can be placed in the 

seed words A and Bs respectively. • 
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To complete the solution to our problem, we have to examine all the FBPs 

found, to check for equivalences. By inspection, we find the following set of 

inequivalent sequences which have 6 = 6(a) = 0.382, for 777 = 1, 2, w = 1, 2, 3 

4. 

{F(l, 0) = a, F(ll, 00) = 2a, F(01, 100), F(10, 001), 

F(01, 001), F(00, 1100), F(00, 1001), F(00, 1010)}. 

The cardinal number of this set is 8, which is half the total number of equal-

density FBPs found. 

7. GENERALIZATIONS, FURTHER PROPERTIES OF F(A, B); APPLICATIONS 

In this final section, we give density formulas, without proofs, for two 

new kinds of binary pattern; then we list propositions concerning run-lengths 

of A and B in the pattern F(A9 B). Details of these results may be found in 

[2] and [3]. We also indicate briefly how word patterns can be used to gener-

ate number sequences. Two ways of doing this are given; we are investigating 

others. We believe that studies of number sequences derived from word patterns 

will be very fruitful, in that they will provide classes of sequences with in-

teresting properties related to those of word patterns. Developing links be-

tween theories of word patterns and theories of number sequences will prove 

beneficial to both topics. 

(1) The density of an FBP with W± = rA and W 2 = sB 

Let W = AA . . . A (with A taken r times) and W2 = BB ... B (with B taken s 
times), with A , B being binary words. Then 

S(F(rA, sB)) = Va T SbC- • (13) 
v v rm + sna 

(2) Tribonacci binary patterns 

T(W s W , W ) is the tribonacci word pattern 

W,W^W0...W ....where W„ = W ^W W . 
1 2 3 n n n- 3 n-2 n-1 

If the seed words W , W , and W have the binary character set, we have a tri-

bonacci binary pattern (a- TBP) whose density is given by 

TOO + (T + 1)0) + T203 

6(20= — l , (14) 
Tl1 + (T + l)l2 + T2£3 

where T = 1.839 is the positive root of x3 - x1 - x - 1 = 0. It is clear that 

we can extend these definitions and formulas to give n-bonacci patterns and 

their densities. 
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(3) Further properties of F(A, B) = ABABBABBBBAB... 

The following propositions concerning runs within the pattern are easily 

proved: 

All A-TUUS have length 1; a l l £-runs have length 1 or 2 . (15) 
The number of A's in the ith word of the p a t t e r n i s fi„2\ 
the number of 5fs is f._15 with f_± = 1, /0 = 0. (16) 

The number of 5-runs of length 2 in W2i + 1 i s / 2 ( t : _ 1 ) 5 and 
in WH + 2 i s f2i_1 - 1, i = 1, 2, . . . . (17) 

The number of 5-runs of length 1 in W^ can be determined using (16) and 
(17) . 

Consider the ith Fibonacci sentence S^ = W1W2 . •• W^. The 
number of 5-runs of length 1 in S^ Is f^ _2+ I, of length 
2 is /.£_!- 15 and of either length is f^9 for £ > 1. (18) 

Define the chaos x • ° f ̂  to ^e t^ie n u m D e r of transpositions of adjacent 

letters required to set the word into the form AA. . .ABB. . .B. Then x,- satis-

fies the recurrence \ i - \i_2 - xi_1 = f/_3* V > 4, with xx -= X2 = X3
 = °-

(4) Two applications in number theory 

(I) Generation of r-tuple integer sequences 

In [2] we show generally how FBPs may be used to generate sequences 

of p-tuples of integers3 whose properties we have only begun to study. 

One simple example must suffice here, with r = 2. 
Suppose we use seed words W1 = a9 W2 = ba9 then consider the posi-

tions of a and b5 respectively, in the resulting Fibonacci word pattern. 

Thus, the word pattern is 

F(a9 ba) = abaababaaba.••, 
and the a-positions are 1, 3, 4, 6, 8, 9, 11, ... with the ̂ -positions being 

2 9 5 9 79 109 etc. Taking these in pairs, we get the 2-tuple sequence 

(1, 2 ) , (3, 5 ) , (4, 7 ) , (6, 10), etc. 

We see that F(a, ba) in this manner generates the Wythoff-pairs sequence. 

It is clear how we can generate 3-tuple sequences if we use charac-

ter set {a9 b5 a}; and so on. 

(II) The Fibonacci reals 

if we take any Fibonacci binary pattern and place a decimal point 

in front of it, we obtain a binary representation of a real number in the 

interval (0, 1). We believe the class of all such numbers, namely the 

Fibonacci reals to be worthy of study. 
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